Play to Earn crypto games

Maciej Zieliński

17 May 2022
Play to Earn crypto games

The gaming industry has gained tremendous popularity both among children and adults. Seeing the potential in digitizing reality, technology companies are constantly trying to come up with new ideas and offers for their customers. An interesting idea is the concept of introducing games that allow us to earn money while we play. It's an even more interesting idea to earn money on games that are connected with blockchain technology and cryptocurrencies. Is it possible? How do Play to Earn games work and which of them are worth your attention? We're writing about it below!

​What are Play to Earn crypto games?

These special and original games have tokens that support the economics of the title. You buy, trade, sell and play for these currencies in the game. Some games need to be paid for and require an initial investment, while others can be played for free from the outset. It should be noted that a large number of Play to Earn titles are not as advanced as the most popular PC or console games. Cryptocurrency-based games that allow you to earn capital will not blow the minds of people looking for sophisticated graphic, for example. It is an interesting concept, however, to make money from having fun.

Play to Earn

What traits does a Play to Earn game have?

Play to Earn crypto games are the initial phase of gaming connected with crypto. As such, both good and bad projects are being released. The bad ones can be focused on obtaining as much capital as possible from us. The good ones will help us multiply it. So it's a good idea to see who is behind the creation of a title before we start playing it. What should you look out for? Definitely tokenomics – that is, the complete supply of tokens, the cycle of dispensing them, forms that encourage token ownership, and the ways you can use them. It is better to avoid of (or pay special attention to) titles that have tokens without any limit. The unlimited supply of tokens makes them less valuable. In addition, in order to stake or sell tokens, they must have some value. There is no single solution that will make it possible to evaluate a game in a complex manner. The additional advice that comes to mind is that, during the game (especially at the beginning), you should avoid making larger purchases, as if they were not there, as it is a form of investment that could lead to a loss of capital. But if you're doing it responsibly and enjoy having fun, check out the titles we've described below!

Play to Earn

​Axie Infinity

Axie Infinity is one of the most popular Play to Earn crypto games. It enjoys considerable trust and interest because it allows households that are in difficult geopolitical situations, such as those in the Philippines, Venezuela, etc to obtain income. The game requires owning three virtual creatures that can be purchased on the market. You can also buy eggs in the Axies labs and wait for the creatures to hatch. Animals can also be bred and sold on the market. This is a form of NFT. The animals serve as merchandise. They can fight against other pets and earn the Axie Infinity Shards (AXS) token as a result. This is a token that can also be redeemed for real cash. In addition to AXS, the game offers another ERC-20 token, the Smooth Love Potions (SLP), which is used for Axies breeding. Like AXS, SLP can be converted into fiat currencies on the most popular crypto exchanges.

​Plant Vs. Undead

This is a tower defense game. Moreover, it is a multiplayer game. The story itself is about a planet that was destroyed by a meteorite and due to this, the animals living on it turned into zombies. These animals want to destroy trees, but after the disaster, plants have mutated as well. As such, trees can defend themselves. Playing as the flora, you fight the animals. In this game you earn a PVU token that has been placed on the Binance Smart Chain. In the game, the currency is Light Energy (LE). You can earn tokens during the game by making progress, or simply purchase tokens for cash. You don't have to invest any capital at the start of the game. Each player receives a certain amount of NFT and trees used to fight zombies from the outset. The combat gives you plant seeds that you can later sell.

The Sandbox

The Sandbox game allows you to earn cryptocurrencies in a variety of ways. You can be an artist, a game developer, or a landowner to earn SAND, a metaverse cryptocurrency. This is an extremely original form of financing and raising capital. As an artist, you can create useful resources with the help of the VoxEdit tool. Such a solution has a catch - first you need to get permission from the creators of the platform to put the earned NFT tokens on your marketplace. Another concept is to buy land for rent in the game or create mini-games. This is not easy as in this case you should have programming skills. If you have a knack for it, then as a land creator you can charge other players for it. The SAND token can be staked, bought, or sold on major cryptocurrency platforms.

Pegaxy

Who hasn't wanted to race in horse racing? Pegaxy gives you that opportunity. You can race against the best players for NFT tokens. You can buy or rent your horse at the beginning and earn VIS tokens. Unfortunately, the problem is that players have little control over the race. They can only check the elements of the track, choose the right horse and select the equipment. The rest of the activities are random. You can create breeding of horses and then sell them for tokens and buy them for USDT. Earning cryptocurrencies takes place in races, renting, or selling horses. A system to earn from staking is also being implemented.

Decentraland

Decentraland is one of the most popular cryptocurrency-related games. The main form of earning is buying land and then subletting or selling it. You can also organize events and mini-games to target the general public for a fee. To construct the game world and earn on it we need a tool, which is free. Nevertheless, we need to buy the plot for MANA - the game's token, which is its currency. Another possibility to earn money is offering to oversee the land of other participants in exchange for tokens. An additional source of income is designing wearable clothes and items that require community approval.

Blankos Block Party

Blankos Block Party involves playing with small, toy-looking blankos. We earn money here based on collecting blankos, gaining levels, and selling them. The value of the character depends on its abilities and uniqueness. The cheapest creatures cost about ten dollars. The most expensive - even 5 million dollars. The vast majority of animals are valued at thousands of dollars. In the game, you can also create pages and mini-games for other players, but this phase is recently at the beta stage.

Thetan Arena

Thetan Arena is a free Play to Earn game that lets you earn cryptocurrencies. With it, you get three free characters that you can develop. As part of your human development, you get a Thetan Coin (THC) token. With this currency, you can unlock advanced characters, or you can buy them already converted on the market. Advanced characters develop quickly and can be traded as NFT. Additionally, our folk can take part in organized events. Funding is based on THG (Thetan Gem), a utility and management token that supports in-game settlement. It can also be staked. You can also convert crypto into fiat through the most popular exchanges.

Summary Play to Earn games

Play to Earn games are great for people who want to make money from cryptocurrencies and have fun at the same time. However, remember to check at the beginning of the platform is free and has not been constructed to get as much capital from us as possible. It is worth being interested in whether the supply of tokens is unlimited, as this may cause a situation in which their value will be negligible. Nevertheless, we hope that after reading this article many people will consider this form of entertainment which is not only enjoyable but also profitable.

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

AI-Driven Frontend Automation: Elevating Developer Productivity to New Heights

Gracjan Prusik

11 Mar 2025
AI-Driven Frontend Automation: Elevating Developer Productivity to New Heights

AI Revolution in the Frontend Developer's Workshop

In today's world, programming without AI support means giving up a powerful tool that radically increases a developer's productivity and efficiency. For the modern developer, AI in frontend automation is not just a curiosity, but a key tool that enhances productivity. From automatically generating components, to refactoring, and testing – AI tools are fundamentally changing our daily work, allowing us to focus on the creative aspects of programming instead of the tedious task of writing repetitive code. In this article, I will show how these tools are most commonly used to work faster, smarter, and with greater satisfaction.

This post kicks off a series dedicated to the use of AI in frontend automation, where we will analyze and discuss specific tools, techniques, and practical use cases of AI that help developers in their everyday tasks.

AI in Frontend Automation – How It Helps with Code Refactoring

One of the most common uses of AI is improving code quality and finding errors. These tools can analyze code and suggest optimizations. As a result, we will be able to write code much faster and significantly reduce the risk of human error.

How AI Saves Us from Frustrating Bugs

Imagine this situation: you spend hours debugging an application, not understanding why data isn't being fetched. Everything seems correct, the syntax is fine, yet something isn't working. Often, the problem lies in small details that are hard to catch when reviewing the code.

Let’s take a look at an example:

function fetchData() {
    fetch("htts://jsonplaceholder.typicode.com/posts")
      .then((response) => response.json())
      .then((data) => console.log(data))
      .catch((error) => console.error(error));
}

At first glance, the code looks correct. However, upon running it, no data is retrieved. Why? There’s a typo in the URL – "htts" instead of "https." This is a classic example of an error that could cost a developer hours of frustrating debugging.

When we ask AI to refactor this code, not only will we receive a more readable version using newer patterns (async/await), but also – and most importantly – AI will automatically detect and fix the typo in the URL:

async function fetchPosts() {
    try {
      const response = await fetch(
        "https://jsonplaceholder.typicode.com/posts"
      );
      const data = await response.json();
      console.log(data);
    } catch (error) {
      console.error(error);
    }
}

How AI in Frontend Automation Speeds Up UI Creation

One of the most obvious applications of AI in frontend development is generating UI components. Tools like GitHub Copilot, ChatGPT, or Claude can generate component code based on a short description or an image provided to them.

With these tools, we can create complex user interfaces in just a few seconds. Generating a complete, functional UI component often takes less than a minute. Furthermore, the generated code is typically error-free, includes appropriate animations, and is fully responsive, adapting to different screen sizes. It is important to describe exactly what we expect.

Here’s a view generated by Claude after entering the request: “Based on the loaded data, display posts. The page should be responsive. The main colors are: #CCFF89, #151515, and #E4E4E4.”

Generated posts view

AI in Code Analysis and Understanding

AI can analyze existing code and help understand it, which is particularly useful in large, complex projects or code written by someone else.

Example: Generating a summary of a function's behavior

Let’s assume we have a function for processing user data, the workings of which we don’t understand at first glance. AI can analyze the code and generate a readable explanation:

function processUserData(users) {
  return users
    .filter(user => user.isActive) // Checks the `isActive` value for each user and keeps only the objects where `isActive` is true
    .map(user => ({ 
      id: user.id, // Retrieves the `id` value from each user object
      name: `${user.firstName} ${user.lastName}`, // Creates a new string by combining `firstName` and `lastName`
      email: user.email.toLowerCase(), // Converts the email address to lowercase
    }));
}

In this case, AI not only summarizes the code's functionality but also breaks down individual operations into easier-to-understand segments.

AI in Frontend Automation – Translations and Error Detection

Every frontend developer knows that programming isn’t just about creatively building interfaces—it also involves many repetitive, tedious tasks. One of these is implementing translations for multilingual applications (i18n). Adding translations for each key in JSON files and then verifying them can be time-consuming and error-prone.

However, AI can significantly speed up this process. Using ChatGPT, DeepSeek, or Claude allows for automatic generation of translations for the user interface, as well as detecting linguistic and stylistic errors.

Example:

We have a translation file in JSON format:

{
  "welcome_message": "Welcome to our application!",
  "logout_button": "Log out",
  "error_message": "Something went wrong. Please try again later."
}

AI can automatically generate its Polish version:

{
  "welcome_message": "Witaj w naszej aplikacji!",
  "logout_button": "Wyloguj się",
  "error_message": "Coś poszło nie tak. Spróbuj ponownie później."
}

Moreover, AI can detect spelling errors or inconsistencies in translations. For example, if one part of the application uses "Log out" and another says "Exit," AI can suggest unifying the terminology.

This type of automation not only saves time but also minimizes the risk of human errors. And this is just one example – AI also assists in generating documentation, writing tests, and optimizing performance, which we will discuss in upcoming articles.

Summary

Artificial intelligence is transforming the way frontend developers work daily. From generating components and refactoring code to detecting errors, automating testing, and documentation—AI significantly accelerates and streamlines the development process. Without these tools, we would lose a lot of valuable time, which we certainly want to avoid.

In the next parts of this series, we will cover topics such as:

Stay tuned to keep up with the latest insights!

The Ultimate Web3 Backend Guide: Supercharge dApps with APIs

Tomasz Dybowski

04 Mar 2025
The Ultimate Web3 Backend Guide: Supercharge dApps with APIs

Introduction

Web3 backend development is essential for building scalable, efficient and decentralized applications (dApps) on EVM-compatible blockchains like Ethereum, Polygon, and Base. A robust Web3 backend enables off-chain computations, efficient data management and better security, ensuring seamless interaction between smart contracts, databases and frontend applications.

Unlike traditional Web2 applications that rely entirely on centralized servers, Web3 applications aim to minimize reliance on centralized entities. However, full decentralization isn't always possible or practical, especially when it comes to high-performance requirements, user authentication or storing large datasets. A well-structured backend in Web3 ensures that these limitations are addressed, allowing for a seamless user experience while maintaining decentralization where it matters most.

Furthermore, dApps require efficient backend solutions to handle real-time data processing, reduce latency, and provide smooth user interactions. Without a well-integrated backend, users may experience delays in transactions, inconsistencies in data retrieval, and inefficiencies in accessing decentralized services. Consequently, Web3 backend development is a crucial component in ensuring a balance between decentralization, security, and functionality.

This article explores:

  • When and why Web3 dApps need a backend
  • Why not all applications should be fully on-chain
  • Architecture examples of hybrid dApps
  • A comparison between APIs and blockchain-based logic

This post kicks off a Web3 backend development series, where we focus on the technical aspects of implementing Web3 backend solutions for decentralized applications.

Why Do Some Web3 Projects Need a Backend?

Web3 applications seek to achieve decentralization, but real-world constraints often necessitate hybrid architectures that include both on-chain and off-chain components. While decentralized smart contracts provide trustless execution, they come with significant limitations, such as high gas fees, slow transaction finality, and the inability to store large amounts of data. A backend helps address these challenges by handling logic and data management more efficiently while still ensuring that core transactions remain secure and verifiable on-chain.

Moreover, Web3 applications must consider user experience. Fully decentralized applications often struggle with slow transaction speeds, which can negatively impact usability. A hybrid backend allows for pre-processing operations off-chain while committing final results to the blockchain. This ensures that users experience fast and responsive interactions without compromising security and transparency.

While decentralization is a core principle of blockchain technology, many dApps still rely on a Web2-style backend for practical reasons:

1. Performance & Scalability in Web3 Backend Development

  • Smart contracts are expensive to execute and require gas fees for every interaction.
  • Offloading non-essential computations to a backend reduces costs and improves performance.
  • Caching and load balancing mechanisms in traditional backends ensure smooth dApp performance and improve response times for dApp users.
  • Event-driven architectures using tools like Redis or Kafka can help manage asynchronous data processing efficiently.

2. Web3 APIs for Data Storage and Off-Chain Access

  • Storing large amounts of data on-chain is impractical due to high costs.
  • APIs allow dApps to store & fetch off-chain data (e.g. user profiles, transaction history).
  • Decentralized storage solutions like IPFS, Arweave and Filecoin can be used for storing immutable data (e.g. NFT metadata), but a Web2 backend helps with indexing and querying structured data efficiently.

3. Advanced Logic & Data Aggregation in Web3 Backend

  • Some dApps need complex business logic that is inefficient or impossible to implement in a smart contract.
  • Backend APIs allow for data aggregation from multiple sources, including oracles (e.g. Chainlink) and off-chain databases.
  • Middleware solutions like The Graph help in indexing blockchain data efficiently, reducing the need for on-chain computation.

4. User Authentication & Role Management in Web3 dApps

  • Many applications require user logins, permissions or KYC compliance.
  • Blockchain does not natively support session-based authentication, requiring a backend for handling this logic.
  • Tools like Firebase Auth, Auth0 or Web3Auth can be used to integrate seamless authentication for Web3 applications.

5. Cost Optimization with Web3 APIs

  • Every change in a smart contract requires a new audit, costing tens of thousands of dollars.
  • By handling logic off-chain where possible, projects can minimize expensive redeployments.
  • Using layer 2 solutions like Optimism, Arbitrum and zkSync can significantly reduce gas costs.

Web3 Backend Development: Tools and Technologies

A modern Web3 backend integrates multiple tools to handle smart contract interactions, data storage, and security. Understanding these tools is crucial to developing a scalable and efficient backend for dApps. Without the right stack, developers may face inefficiencies, security risks, and scaling challenges that limit the adoption of their Web3 applications.

Unlike traditional backend development, Web3 requires additional considerations, such as decentralized authentication, smart contract integration, and secure data management across both on-chain and off-chain environments.

Here’s an overview of the essential Web3 backend tech stack:

1. API Development for Web3 Backend Services

  • Node.js is the go-to backend runtime good for Web3 applications due to its asynchronous event-driven architecture.
  • NestJS is a framework built on top of Node.js, providing modular architecture and TypeScript support for structured backend development.

2. Smart Contract Interaction Libraries for Web3 Backend

  • Ethers.js and Web3.js are TypeScript/JavaScript libraries used for interacting with Ethereum-compatible blockchains.

3. Database Solutions for Web3 Backend

  • PostgreSQL: Structured database used for storing off-chain transactional data.
  • MongoDB: NoSQL database for flexible schema data storage.
  • Firebase: A set of tools used, among other things, for user authentication.
  • The Graph: Decentralized indexing protocol used to query blockchain data efficiently.

4. Cloud Services and Hosting for Web3 APIs

When It Doesn't Make Sense to Go Fully On-Chain

Decentralization is valuable, but it comes at a cost. Fully on-chain applications suffer from performance limitations, high costs and slow execution speeds. For many use cases, a hybrid Web3 architecture that utilizes a mix of blockchain-based and off-chain components provides a more scalable and cost-effective solution.

In some cases, forcing full decentralization is unnecessary and inefficient. A hybrid Web3 architecture balances decentralization and practicality by allowing non-essential logic and data storage to be handled off-chain while maintaining trustless and verifiable interactions on-chain.

The key challenge when designing a hybrid Web3 backend is ensuring that off-chain computations remain auditable and transparent. This can be achieved through cryptographic proofs, hash commitments and off-chain data attestations that anchor trust into the blockchain while improving efficiency.

For example, Optimistic Rollups and ZK-Rollups allow computations to happen off-chain while only submitting finalized data to Ethereum, reducing fees and increasing throughput. Similarly, state channels enable fast, low-cost transactions that only require occasional settlement on-chain.

A well-balanced Web3 backend architecture ensures that critical dApp functionalities remain decentralized while offloading resource-intensive tasks to off-chain systems. This makes applications cheaper, faster and more user-friendly while still adhering to blockchain's principles of transparency and security.

Example: NFT-based Game with Off-Chain Logic

Imagine a Web3 game where users buy, trade and battle NFT-based characters. While asset ownership should be on-chain, other elements like:

  • Game logic (e.g., matchmaking, leaderboard calculations)
  • User profiles & stats
  • Off-chain notifications

can be handled off-chain to improve speed and cost-effectiveness.

Architecture Diagram

Below is an example diagram showing how a hybrid Web3 application splits responsibilities between backend and blockchain components.

Hybrid Web3 Architecture

Comparing Web3 Backend APIs vs. Blockchain-Based Logic

FeatureWeb3 Backend (API)Blockchain (Smart Contracts)
Change ManagementCan be updated easilyEvery change requires a new contract deployment
CostTraditional hosting feesHigh gas fees + costly audits
Data StorageCan store large datasetsLimited and expensive storage
SecuritySecure but relies on centralized infrastructureFully decentralized & trustless
PerformanceFast response timesLimited by blockchain throughput

Reducing Web3 Costs with AI Smart Contract Audit

One of the biggest pain points in Web3 development is the cost of smart contract audits. Each change to the contract code requires a new audit, often costing tens of thousands of dollars.

To address this issue, Nextrope is developing an AI-powered smart contract auditing tool, which:

  • Reduces audit costs by automating code analysis.
  • Speeds up development cycles by catching vulnerabilities early.
  • Improves security by providing quick feedback.

This AI-powered solution will be a game-changer for the industry, making smart contract development more cost-effective and accessible.

Conclusion

Web3 backend development plays a crucial role in scalable and efficient dApps. While full decentralization is ideal in some cases, many projects benefit from a hybrid architecture, where off-chain components optimize performance, reduce costs and improve user experience.

In future posts in this Web3 backend series, we’ll explore specific implementation details, including:

  • How to design a Web3 API for dApps
  • Best practices for integrating backend services
  • Security challenges and solutions

Stay tuned for the next article in this series!