How to develop secure and optimized blockchain smart contracts? – 5 rules | Nextrope Academy

Paulina Lewandowska

10 Oct 2022
How to develop secure and optimized blockchain smart contracts? – 5 rules | Nextrope Academy

Why is the security of smart contracts important?

Smart contracts are a major part of applications based on blockchain technology. In the development process of smart contracts, we should maintain the highest security standards because of factors such as:

  • in many systems, they are responsible for the most critical functionality, the incorrect operation of which can be associated with a number of very unpleasant consequences, including irreversible loss of funds, a logical error ruining the operation of the entire application/protocol,
  • a smart contract that has already been published on the web cannot be modified. This feature means that bugs and vulnerabilities that are diagnosed after the contract is launched productionally cannot be fixed. (There is an advanced technique to create "upgradeable contracts," which allows the contract logic to be modified later, but it also has a number of other drawbacks and limitations that do not relieve the developer from writing secure code. For the purposes of this article, we will skip a detailed analysis of this solution).
  • The source code of most contracts is publicly available. It is good practice to publish the source code in services such as Etherscan which significantly increases the credibility of the application data or defi protocols. However, making the code publicly available entails that anyone can verify such code for security, and use any irregularities to their advantage.

Learning to write secure smart contracts is a process that requires learning many advanced aspects of the Solidity language. In this article, we will present 5 tips to simplify this process and secure our software from the most common mistakes.

1. Accurate testing of smart contracts

The first, and at the same time the most important factor that allows us to verify that our contract works properly is writing automated tests. The testing process usually allows us to reveal various security gaps or irregularities at an early stage of development. Another advantage of automated tests is protection against code regression, i.e. a situation when during implementation of new functionalities bugs are created in previously written code. In such tests we should check all possible scenarios, 100% code coverage with tests should not be a goal in itself, but only a measure to help us make sure that tests scrupulously check every method on our contract.

2. Configuration of additional tools

It is worthwhile to make use of tools that are able to measure and check the quality of the software we provide. Tools you should use in your daily work are:

  • A plugin for measuring code coverage e.g. solidity-coverage. Expanding on the thought from the first point that code coverage should not be an end in itself, it is nevertheless worth having such analytics in the testing process. By analyzing code coverage with tests, we are able to easily see which code fragments require us to write additional tests.
  • Framework for static code analysis e.g. slither, mythril. These are tools that, with the help of static analysis, are able not only to point out places in our code where a vulnerability exists, but also to offer a number of tips. Following these tips can improve not only the security, but also the quality of our software.

3. Openzeppelin smart contract library

There are many libraries and ready-made contracts that have been prepared for later use by developers of blockchain applications. However, each of these libraries needs to be verified before use to see if it has any vulnerabilities. The most popular library at the moment is openzeppelin. It is a collection of secure, tested smart contracts used in many of DeFi's most popular protocols such as uniswap. It allows us to use the most commonly used implementations of ERC (Ethereum Request For Comments) standards and reusable contracts.

The library has a large range of components that can be used to implement the most popular functionalities on the smart contract side. I will give two applications of the library as examples. However, we believe it is worth exploring all the capabilities and contracts that are provided there.

  • Ownable and AccessControl extensions

These extensions allow us to very easily add access control to functions that, according to business requirements, should only be available for execution to authorized addresses. An example from the documentation showing the use of the Ownable extension in practice:

pragma solidity ^0.8.0;
 
import "@openzeppelin/contracts/access/Ownable.sol";
 
contract MyContract is Ownable {
    function normalThing() public {
        // anyone can call this normalThing()
    }
 
    function specialThing() public onlyOwner {
        // only the owner can call specialThing()!
    }
}

As you can see, using the openzeppelin library is not only very easy, but also allows you to write more concise code that other developers can understand.

  • Implementations of the popular token standards ERC-20, ERC-721 and ERC-1155

Many decentralized applications and protocols are based on ERC-20 or NFT tokens. Each token must have an implemented interface that works according to the specification. Implementing a token entirely on your own is associated with a high risk of error, so our token may have security holes or problems with operation on various exchanges and wallets. With the help of openzeppelin library we are able to prepare a standard, functional token and enrich it with the most popular extensions with little effort. A good place to start is the interactive token configurator in the openzeppelin documentation, it allows us to generate token source code that will meet functional requirements and security standards.

4. Using new versions of the Solidity language

An important safety tip is that projects should use new versions of the Solidity language. The compiler requires us to include Solidity version information at the beginning of each source file with a .sol extension:

pragma solidity 0.8.17;

Along with new versions of the language, new features are introduced, but in addition to this, it is also important that fixes are added to various kinds of known bugs. A list of the bugs found in each version can be found in this file. As you can see, with newer versions of the language the number of bugs decreases and is successively fixed.

The language's developers in the official documentation also recommend using the latest version in newly implemented smart contracts:

When deploying contracts, you should use the latest released version of Solidity. Apart from exceptional cases, only the latest version receives security fixes”.

5. Learning from other people's mistakes

An essential factor for delivering secure software is the sheer knowledge of the advanced aspects of the Solidity language, as well as awareness of potential threats. In the past, we have witnessed many vulnerabilities where multi-million dollar assets fell prey to the attacker. Many examples of such incidents can be found on the Internet, along with detailed information on what mistake was made by the developers and how it could have been prevented. An example of the above is an article explaining the "reentrancy" attack, with the help of which the attacker stole $150 million worth of ETH. The list of possibilities for attacking smart contracts is definitely longer, so it is worth reading the list of the most popular vulnerabilities in Solidity. A good way to learn security is also to take on the role of an attacker, for this purpose the Ethernaut service is worth a look. There you will find a collection of tasks involving hacking various smart contracts, these tasks will help consolidate previously acquired security knowledge and learn new advanced aspects of the Solidity language.

Summary

In conclusion, software security of decentralized applications is a very important, but also difficult issue requiring knowledge of not only the programming language itself. Also required are testing skills, a willingness to constantly explore the topic of smart contract vulnerabilities, knowledge of new libraries and tools. This topic is vast and complicated and the above 5 points are just guidelines that can help improve the security of our code and with the associated learning. Also take a look at other articles in the Nextrope Academy series, where we take a closer look at other technical issues.

Tagi

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

The Ultimate Web3 Backend Guide: Supercharge dApps with APIs

Tomasz Dybowski

04 Mar 2025
The Ultimate Web3 Backend Guide: Supercharge dApps with APIs

Introduction

Web3 backend development is essential for building scalable, efficient and decentralized applications (dApps) on EVM-compatible blockchains like Ethereum, Polygon, and Base. A robust Web3 backend enables off-chain computations, efficient data management and better security, ensuring seamless interaction between smart contracts, databases and frontend applications.

Unlike traditional Web2 applications that rely entirely on centralized servers, Web3 applications aim to minimize reliance on centralized entities. However, full decentralization isn't always possible or practical, especially when it comes to high-performance requirements, user authentication or storing large datasets. A well-structured backend in Web3 ensures that these limitations are addressed, allowing for a seamless user experience while maintaining decentralization where it matters most.

Furthermore, dApps require efficient backend solutions to handle real-time data processing, reduce latency, and provide smooth user interactions. Without a well-integrated backend, users may experience delays in transactions, inconsistencies in data retrieval, and inefficiencies in accessing decentralized services. Consequently, Web3 backend development is a crucial component in ensuring a balance between decentralization, security, and functionality.

This article explores:

  • When and why Web3 dApps need a backend
  • Why not all applications should be fully on-chain
  • Architecture examples of hybrid dApps
  • A comparison between APIs and blockchain-based logic

This post kicks off a Web3 backend development series, where we focus on the technical aspects of implementing Web3 backend solutions for decentralized applications.

Why Do Some Web3 Projects Need a Backend?

Web3 applications seek to achieve decentralization, but real-world constraints often necessitate hybrid architectures that include both on-chain and off-chain components. While decentralized smart contracts provide trustless execution, they come with significant limitations, such as high gas fees, slow transaction finality, and the inability to store large amounts of data. A backend helps address these challenges by handling logic and data management more efficiently while still ensuring that core transactions remain secure and verifiable on-chain.

Moreover, Web3 applications must consider user experience. Fully decentralized applications often struggle with slow transaction speeds, which can negatively impact usability. A hybrid backend allows for pre-processing operations off-chain while committing final results to the blockchain. This ensures that users experience fast and responsive interactions without compromising security and transparency.

While decentralization is a core principle of blockchain technology, many dApps still rely on a Web2-style backend for practical reasons:

1. Performance & Scalability in Web3 Backend Development

  • Smart contracts are expensive to execute and require gas fees for every interaction.
  • Offloading non-essential computations to a backend reduces costs and improves performance.
  • Caching and load balancing mechanisms in traditional backends ensure smooth dApp performance and improve response times for dApp users.
  • Event-driven architectures using tools like Redis or Kafka can help manage asynchronous data processing efficiently.

2. Web3 APIs for Data Storage and Off-Chain Access

  • Storing large amounts of data on-chain is impractical due to high costs.
  • APIs allow dApps to store & fetch off-chain data (e.g. user profiles, transaction history).
  • Decentralized storage solutions like IPFS, Arweave and Filecoin can be used for storing immutable data (e.g. NFT metadata), but a Web2 backend helps with indexing and querying structured data efficiently.

3. Advanced Logic & Data Aggregation in Web3 Backend

  • Some dApps need complex business logic that is inefficient or impossible to implement in a smart contract.
  • Backend APIs allow for data aggregation from multiple sources, including oracles (e.g. Chainlink) and off-chain databases.
  • Middleware solutions like The Graph help in indexing blockchain data efficiently, reducing the need for on-chain computation.

4. User Authentication & Role Management in Web3 dApps

  • Many applications require user logins, permissions or KYC compliance.
  • Blockchain does not natively support session-based authentication, requiring a backend for handling this logic.
  • Tools like Firebase Auth, Auth0 or Web3Auth can be used to integrate seamless authentication for Web3 applications.

5. Cost Optimization with Web3 APIs

  • Every change in a smart contract requires a new audit, costing tens of thousands of dollars.
  • By handling logic off-chain where possible, projects can minimize expensive redeployments.
  • Using layer 2 solutions like Optimism, Arbitrum and zkSync can significantly reduce gas costs.

Web3 Backend Development: Tools and Technologies

A modern Web3 backend integrates multiple tools to handle smart contract interactions, data storage, and security. Understanding these tools is crucial to developing a scalable and efficient backend for dApps. Without the right stack, developers may face inefficiencies, security risks, and scaling challenges that limit the adoption of their Web3 applications.

Unlike traditional backend development, Web3 requires additional considerations, such as decentralized authentication, smart contract integration, and secure data management across both on-chain and off-chain environments.

Here’s an overview of the essential Web3 backend tech stack:

1. API Development for Web3 Backend Services

  • Node.js is the go-to backend runtime good for Web3 applications due to its asynchronous event-driven architecture.
  • NestJS is a framework built on top of Node.js, providing modular architecture and TypeScript support for structured backend development.

2. Smart Contract Interaction Libraries for Web3 Backend

  • Ethers.js and Web3.js are TypeScript/JavaScript libraries used for interacting with Ethereum-compatible blockchains.

3. Database Solutions for Web3 Backend

  • PostgreSQL: Structured database used for storing off-chain transactional data.
  • MongoDB: NoSQL database for flexible schema data storage.
  • Firebase: A set of tools used, among other things, for user authentication.
  • The Graph: Decentralized indexing protocol used to query blockchain data efficiently.

4. Cloud Services and Hosting for Web3 APIs

When It Doesn't Make Sense to Go Fully On-Chain

Decentralization is valuable, but it comes at a cost. Fully on-chain applications suffer from performance limitations, high costs and slow execution speeds. For many use cases, a hybrid Web3 architecture that utilizes a mix of blockchain-based and off-chain components provides a more scalable and cost-effective solution.

In some cases, forcing full decentralization is unnecessary and inefficient. A hybrid Web3 architecture balances decentralization and practicality by allowing non-essential logic and data storage to be handled off-chain while maintaining trustless and verifiable interactions on-chain.

The key challenge when designing a hybrid Web3 backend is ensuring that off-chain computations remain auditable and transparent. This can be achieved through cryptographic proofs, hash commitments and off-chain data attestations that anchor trust into the blockchain while improving efficiency.

For example, Optimistic Rollups and ZK-Rollups allow computations to happen off-chain while only submitting finalized data to Ethereum, reducing fees and increasing throughput. Similarly, state channels enable fast, low-cost transactions that only require occasional settlement on-chain.

A well-balanced Web3 backend architecture ensures that critical dApp functionalities remain decentralized while offloading resource-intensive tasks to off-chain systems. This makes applications cheaper, faster and more user-friendly while still adhering to blockchain's principles of transparency and security.

Example: NFT-based Game with Off-Chain Logic

Imagine a Web3 game where users buy, trade and battle NFT-based characters. While asset ownership should be on-chain, other elements like:

  • Game logic (e.g., matchmaking, leaderboard calculations)
  • User profiles & stats
  • Off-chain notifications

can be handled off-chain to improve speed and cost-effectiveness.

Architecture Diagram

Below is an example diagram showing how a hybrid Web3 application splits responsibilities between backend and blockchain components.

Hybrid Web3 Architecture

Comparing Web3 Backend APIs vs. Blockchain-Based Logic

FeatureWeb3 Backend (API)Blockchain (Smart Contracts)
Change ManagementCan be updated easilyEvery change requires a new contract deployment
CostTraditional hosting feesHigh gas fees + costly audits
Data StorageCan store large datasetsLimited and expensive storage
SecuritySecure but relies on centralized infrastructureFully decentralized & trustless
PerformanceFast response timesLimited by blockchain throughput

Reducing Web3 Costs with AI Smart Contract Audit

One of the biggest pain points in Web3 development is the cost of smart contract audits. Each change to the contract code requires a new audit, often costing tens of thousands of dollars.

To address this issue, Nextrope is developing an AI-powered smart contract auditing tool, which:

  • Reduces audit costs by automating code analysis.
  • Speeds up development cycles by catching vulnerabilities early.
  • Improves security by providing quick feedback.

This AI-powered solution will be a game-changer for the industry, making smart contract development more cost-effective and accessible.

Conclusion

Web3 backend development plays a crucial role in scalable and efficient dApps. While full decentralization is ideal in some cases, many projects benefit from a hybrid architecture, where off-chain components optimize performance, reduce costs and improve user experience.

In future posts in this Web3 backend series, we’ll explore specific implementation details, including:

  • How to design a Web3 API for dApps
  • Best practices for integrating backend services
  • Security challenges and solutions

Stay tuned for the next article in this series!

Nextrope Launches “AI-Powered Smart Contract Auditing” Project

Miłosz Mach

03 Mar 2025
Nextrope Launches “AI-Powered Smart Contract Auditing” Project

Next Enterprises Sp. z o.o. is implementing a project co-financed by the European Funds, titled "Smart Contract Auditing with Artificial Intelligence". The goal of the project is to develop and deploy an advanced AI model that enables efficient analysis, vulnerability detection, and security auditing of smart contracts, taking into account their complexity and uniqueness.

Planned Project Tasks:

  • Development of an AI model trained on Solidity keywords;
  • Creation of an effective model in simulated conditions;
  • Analysis of the unpredictability of compiled code execution within the Ethereum Virtual Machine (EVM) in the context of the developed model in a controlled environment;
  • Validation of the model in real-world conditions.

Target Groups:

  • Specialized audit firms focused on smart contract security;
  • Companies developing and/or deploying smart contracts on various platforms;
  • Exchanges, wallet providers, and decentralized applications (dApps) in the blockchain sector;
  • Government agencies or industry compliance bodies responsible for blockchain technology regulation;
  • Smart contract security specialists and developers.

The implementation of the developed tool will enable automated and efficient auditing of smart contracts. The model will provide detailed insights and recommendations for optimizing transaction costs and improving contract performance. As a result, users will be able to make informed decisions, enhancing security and operational efficiency within the blockchain ecosystem. Key benefits stem from the model’s training on smart contract code, audit data, and detected vulnerabilities. Additionally, the incorporation of chaos theory principles will allow for more precise risk and anomaly forecasting.

By deploying this advanced AI model, the project will enhance the security, efficiency, and accessibility of blockchain technology for end users. This will translate into tangible social and economic benefits, including:

  1. Economic Security
  2. Business and Financial Security
  3. Increased Public Trust
  4. Optimization of Transaction Costs
  5. Support for Innovation and Entrepreneurship
  6. Education and Public Awareness

Project Value: 4,173,953.24 PLN
European Funds Contribution: 3,090,156.39 PLN

#EUFunds #EuropeanFunds

Challenges in Smart Contract Auditing

Smart contracts have become a fundamental component of blockchain technology, eliminating intermediaries, and automating processes. However, their growing significance also introduces new challenges, particularly in ensuring security and compliance with industry standards.

Traditional smart contract audits rely heavily on manual code reviews, which are expensive, time-consuming, and prone to human error. As cyber threats continue to evolve, the use of advanced technologies to support the auditing process is imperative.

The Role of AI in Data Analysis

Artificial intelligence (AI) introduces a new paradigm in smart contract security assessment by leveraging its capability to process vast amounts of data and identify patterns that may go unnoticed with traditional auditing methods. AI enables:

  • Automated code analysis and real-time detection of potential vulnerabilities,
  • Optimization of auditing processes by reducing human errors and improving threat identification efficiency,
  • Better adaptation to evolving regulatory requirements and emerging threats within the blockchain ecosystem,
  • Rapid analysis of large datasets, allowing for quick insights and the detection of non-obvious dependencies in smart contract code.

By utilizing AI, the auditing process becomes more comprehensive, precise, and scalable, enabling continuous risk monitoring and adaptation to new attack vectors.

A New Era of Smart Contract Security with AI

With the support of European Funds under the European Funds for a Modern Economy (FENG) program, we are conducting research on next-generation blockchain auditing methods, reinforcing Nextrope’s position as a leader in innovative technology solutions.

The "Smart Contract Auditing with Artificial Intelligence (AI)" project contributes to key aspects of blockchain security by:

  • Automating smart contract audits, accelerating verification processes, and improving their accuracy,
  • Optimizing costs, making professional audits more accessible to a broader range of entities,
  • Raising security standards and enhancing regulatory compliance,
  • Increasing trust in smart contracts, fostering broader technology adoption.

Interested in learning more about our project or discovering how to utilize AI in your company? 📩 Contact us at contact@nextrope.com for further details!

Tagi