How to develop secure and optimized blockchain smart contracts? – 5 rules | Nextrope Academy

Paulina Lewandowska

10 Oct 2022
How to develop secure and optimized blockchain smart contracts? – 5 rules | Nextrope Academy

Why is the security of smart contracts important?

Smart contracts are a major part of applications based on blockchain technology. In the development process of smart contracts, we should maintain the highest security standards because of factors such as:

  • in many systems, they are responsible for the most critical functionality, the incorrect operation of which can be associated with a number of very unpleasant consequences, including irreversible loss of funds, a logical error ruining the operation of the entire application/protocol,
  • a smart contract that has already been published on the web cannot be modified. This feature means that bugs and vulnerabilities that are diagnosed after the contract is launched productionally cannot be fixed. (There is an advanced technique to create "upgradeable contracts," which allows the contract logic to be modified later, but it also has a number of other drawbacks and limitations that do not relieve the developer from writing secure code. For the purposes of this article, we will skip a detailed analysis of this solution).
  • The source code of most contracts is publicly available. It is good practice to publish the source code in services such as Etherscan which significantly increases the credibility of the application data or defi protocols. However, making the code publicly available entails that anyone can verify such code for security, and use any irregularities to their advantage.

Learning to write secure smart contracts is a process that requires learning many advanced aspects of the Solidity language. In this article, we will present 5 tips to simplify this process and secure our software from the most common mistakes.

1. Accurate testing of smart contracts

The first, and at the same time the most important factor that allows us to verify that our contract works properly is writing automated tests. The testing process usually allows us to reveal various security gaps or irregularities at an early stage of development. Another advantage of automated tests is protection against code regression, i.e. a situation when during implementation of new functionalities bugs are created in previously written code. In such tests we should check all possible scenarios, 100% code coverage with tests should not be a goal in itself, but only a measure to help us make sure that tests scrupulously check every method on our contract.

2. Configuration of additional tools

It is worthwhile to make use of tools that are able to measure and check the quality of the software we provide. Tools you should use in your daily work are:

  • A plugin for measuring code coverage e.g. solidity-coverage. Expanding on the thought from the first point that code coverage should not be an end in itself, it is nevertheless worth having such analytics in the testing process. By analyzing code coverage with tests, we are able to easily see which code fragments require us to write additional tests.
  • Framework for static code analysis e.g. slither, mythril. These are tools that, with the help of static analysis, are able not only to point out places in our code where a vulnerability exists, but also to offer a number of tips. Following these tips can improve not only the security, but also the quality of our software.

3. Openzeppelin smart contract library

There are many libraries and ready-made contracts that have been prepared for later use by developers of blockchain applications. However, each of these libraries needs to be verified before use to see if it has any vulnerabilities. The most popular library at the moment is openzeppelin. It is a collection of secure, tested smart contracts used in many of DeFi's most popular protocols such as uniswap. It allows us to use the most commonly used implementations of ERC (Ethereum Request For Comments) standards and reusable contracts.

The library has a large range of components that can be used to implement the most popular functionalities on the smart contract side. I will give two applications of the library as examples. However, we believe it is worth exploring all the capabilities and contracts that are provided there.

  • Ownable and AccessControl extensions

These extensions allow us to very easily add access control to functions that, according to business requirements, should only be available for execution to authorized addresses. An example from the documentation showing the use of the Ownable extension in practice:

pragma solidity ^0.8.0;
 
import "@openzeppelin/contracts/access/Ownable.sol";
 
contract MyContract is Ownable {
    function normalThing() public {
        // anyone can call this normalThing()
    }
 
    function specialThing() public onlyOwner {
        // only the owner can call specialThing()!
    }
}

As you can see, using the openzeppelin library is not only very easy, but also allows you to write more concise code that other developers can understand.

  • Implementations of the popular token standards ERC-20, ERC-721 and ERC-1155

Many decentralized applications and protocols are based on ERC-20 or NFT tokens. Each token must have an implemented interface that works according to the specification. Implementing a token entirely on your own is associated with a high risk of error, so our token may have security holes or problems with operation on various exchanges and wallets. With the help of openzeppelin library we are able to prepare a standard, functional token and enrich it with the most popular extensions with little effort. A good place to start is the interactive token configurator in the openzeppelin documentation, it allows us to generate token source code that will meet functional requirements and security standards.

4. Using new versions of the Solidity language

An important safety tip is that projects should use new versions of the Solidity language. The compiler requires us to include Solidity version information at the beginning of each source file with a .sol extension:

pragma solidity 0.8.17;

Along with new versions of the language, new features are introduced, but in addition to this, it is also important that fixes are added to various kinds of known bugs. A list of the bugs found in each version can be found in this file. As you can see, with newer versions of the language the number of bugs decreases and is successively fixed.

The language's developers in the official documentation also recommend using the latest version in newly implemented smart contracts:

When deploying contracts, you should use the latest released version of Solidity. Apart from exceptional cases, only the latest version receives security fixes”.

5. Learning from other people's mistakes

An essential factor for delivering secure software is the sheer knowledge of the advanced aspects of the Solidity language, as well as awareness of potential threats. In the past, we have witnessed many vulnerabilities where multi-million dollar assets fell prey to the attacker. Many examples of such incidents can be found on the Internet, along with detailed information on what mistake was made by the developers and how it could have been prevented. An example of the above is an article explaining the "reentrancy" attack, with the help of which the attacker stole $150 million worth of ETH. The list of possibilities for attacking smart contracts is definitely longer, so it is worth reading the list of the most popular vulnerabilities in Solidity. A good way to learn security is also to take on the role of an attacker, for this purpose the Ethernaut service is worth a look. There you will find a collection of tasks involving hacking various smart contracts, these tasks will help consolidate previously acquired security knowledge and learn new advanced aspects of the Solidity language.

Summary

In conclusion, software security of decentralized applications is a very important, but also difficult issue requiring knowledge of not only the programming language itself. Also required are testing skills, a willingness to constantly explore the topic of smart contract vulnerabilities, knowledge of new libraries and tools. This topic is vast and complicated and the above 5 points are just guidelines that can help improve the security of our code and with the associated learning. Also take a look at other articles in the Nextrope Academy series, where we take a closer look at other technical issues.

Tagi

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

What is Berachain? 🐻 ⛓️ + Proof-of-Liquidity Explained

Karolina

18 Mar 2024
What is Berachain? 🐻 ⛓️ + Proof-of-Liquidity Explained

Enter Berachain: a high-performance, EVM-compatible blockchain that is set to redefine the landscape of decentralized applications (dApps) and blockchain services. Built on the innovative Proof-of-Liquidity consensus and leveraging the robust Polaris framework alongside the CometBFT consensus engine, Berachain is poised to offer an unprecedented blend of efficiency, security, and user-centric benefits. Let's dive into what makes it a groundbreaking development in the blockchain ecosystem.

What is Berachain?

Overview

Berachain is an EVM-compatible Layer 1 (L1) blockchain that stands out through its adoption of the Proof-of-Liquidity (PoL) consensus mechanism. Designed to address the critical challenges faced by decentralized networks. It introduces a cutting-edge approach to blockchain governance and operations.

Key Features

  • High-performance Capabilities. Berachain is engineered for speed and scalability, catering to the growing demand for efficient blockchain solutions.
  • EVM Compatibility. It supports all Ethereum tooling, operations, and smart contract languages, making it a seamless transition for developers and projects from the Ethereum ecosystem.
  • Proof-of-Liquidity.This novel consensus mechanism focuses on building liquidity, decentralizing stake, and aligning the interests of validators and protocol developers.

MUST READ: Docs

EVM-Compatible vs EVM-Equivalent

EVM-Compatible

EVM compatibility means a blockchain can interact with Ethereum's ecosystem to some extent. It can interact supporting its smart contracts and tools but not replicating the entire EVM environment.

EVM-Equivalent

An EVM-equivalent blockchain, on the other hand, aims to fully replicate Ethereum's environment. It ensures complete compatibility and a smooth transition for developers and users alike.

Berachain's Position

Berachain can be considered an "EVM-equivalent-plus" blockchain. It supports all Ethereum operations, tooling, and additional functionalities that optimize for its unique Proof-of-Liquidity and abstracted use cases.

Berachain Modular First Approach

At the heart of Berachain's development philosophy is the Polaris EVM framework. It's a testament to the blockchain's commitment to modularity and flexibility. This approach allows for the easy separation of the EVM runtime layer, ensuring that Berachain can adapt and evolve without compromising on performance or security.

Proof Of Liquidity Overview

High-Level Model Objectives

  • Systemically Build Liquidity. By enhancing trading efficiency, price stability, and network growth, Berachain aims to foster a thriving ecosystem of decentralized applications.
  • Solve Stake Centralization. The PoL consensus works to distribute stake more evenly across the network, preventing monopolization and ensuring a decentralized, secure blockchain.
  • Align Protocols and Validators. Berachain encourages a symbiotic relationship between validators and the broader protocol ecosystem.

Proof-of-Liquidity vs Proof-of-Stake

Unlike traditional Proof of Stake (PoS), which often leads to stake centralization and reduced liquidity, Proof of Liquidity (PoL) introduces mechanisms to incentivize liquidity provision and ensure a fairer, more decentralized network. Berachain separates the governance token (BGT) from the chain's gas token (BERA) and incentives liquidity through BEX pools. Berachain's PoL aims to overcome the limitations of PoS, fostering a more secure and user-centric blockchain.

Berachain EVM and Modular Approach

Polaris EVM

Polaris EVM is the cornerstone of Berachain's EVM compatibility, offering developers an enhanced environment for smart contract execution that includes stateful precompiles and custom modules. This framework ensures that Berachain not only meets but exceeds the capabilities of the traditional Ethereum Virtual Machine.

CometBFT

The CometBFT consensus engine underpins Berachain's network, providing a secure and efficient mechanism for transaction verification and block production. By leveraging the principles of Byzantine fault tolerance (BFT), CometBFT ensures the integrity and resilience of the Berachain blockchain.

Conclusion

Berachain represents a significant leap forward in blockchain technology, combining the best of Ethereum's ecosystem with innovative consensus mechanisms and a modular development approach. As the blockchain landscape continues to evolve, Berachain stands out as a promising platform for developers, users, and validators alike, offering a scalable, efficient, and inclusive environment for decentralized applications and services.

Resources

For those interested in exploring further, a wealth of resources is available, including the Berachain documentation, GitHub repository, and community forums. It offers a compelling vision for the future of blockchain technology, marked by efficiency, security, and community-driven innovation.

FAQ

How is Berachain different?

  • It integrates Proof-of-Liquidity to address stake centralization and enhance liquidity, setting it apart from other blockchains.

Is Berachain EVM-compatible?

  • Yes, it supports Ethereum's tooling and smart contract languages, facilitating easy migration of dApps.

Can it handle high transaction volumes?

  • Yes, thanks to the Polaris framework and CometBFT consensus engine, it's built for scalability and high throughput.

Different Token Release Schedules

Kajetan Olas

15 Mar 2024
Different Token Release Schedules

As simple as it may sound, the decision on the release schedule of tokens is anything but that. It's a strategic choice that can have significant consequences. A well-thought-out token release schedule can prevent market flooding, encourage steady growth, and foster trust in the project. Conversely, a poorly designed schedule may lead to rapid devaluation or loss of investor confidence.

In this article, we will explore the various token release schedules that blockchain projects may adopt. Each type comes with its own set of characteristics, challenges, and strategic benefits. From the straightforwardness of linear schedules to the incentive-driven dynamic releases, understanding these mechanisms is crucial for all crypto founders.

Linear Token Release Schedule

The linear token release schedule is perhaps the most straightforward approach to token distribution. As the name suggests, tokens are released at a constant rate over a specified period until all tokens are fully vested. This approach is favored for its simplicity and ease of understanding, which can be an attractive feature for investors and project teams alike.

Characteristics

  • Predictability: The linear model provides a clear and predictable schedule that stakeholders can rely on. This transparency is often appreciated as it removes any uncertainty regarding when tokens will be available.
  • Implementation Simplicity: With no complex rules or conditions, a linear release schedule is relatively easy to implement and manage. It avoids the need for intricate smart contract programming or ongoing adjustments.
  • Neutral Incentives: There is no explicit incentive for early investment or late participation. Each stakeholder is treated equally, regardless of when they enter the project. This can be perceived as a fair distribution method, as it does not disproportionately reward any particular group.

Implications

  • Capital Dilution Risk: Since tokens are released continuously at the same rate, there's a potential risk that the influx of new tokens into the market could dilute the value, particularly if demand doesn't keep pace with the supply.
  • Attracting Continuous Capital Inflow: A linear schedule may face challenges in attracting new investors over time. Without the incentive of increasing rewards or scarcity over time, sustaining investor interest solely based on project performance can be a test of the project's inherent value and market demand.
  • Neutral Impact on Project Commitment: The lack of timing-based incentives means that commitment to the project may not be influenced by the release schedule. The focus is instead placed on the project's progress and delivery on its roadmap.

In summary, a linear token release schedule offers a no-frills, equal-footing approach to token distribution. While its simplicity is a strength, it can also be a limitation, lacking the strategic incentives that other models offer. In the next sections, we will compare this to other, more dynamic schedules that aim to provide additional strategic advantages.

Growing Token Release Schedule

A growing token release schedule turns the dial up on token distribution as time progresses. This schedule is designed to increase the number of tokens released to the market or to stakeholders with each passing period. This approach can often be associated with incentivizing the sustained growth of the project by rewarding long-term holders.

Characteristics

  • Incentivized Patience: A growing token release schedule encourages stakeholders to remain invested in the project for longer periods, as the reward increases over time. This can be particularly appealing to long-term investors who are looking to maximize their gains.
  • Community Reaction: Such a schedule may draw criticism from those who prefer immediate, high rewards and may be viewed as unfairly penalizing early adopters who receive fewer tokens compared to those who join later. The challenge is to balance the narrative to maintain community support.
  • Delayed Advantage: There is a delayed gratification aspect to this schedule. Early investors might not see an immediate substantial benefit, but they are part of a strategy that aims to increase value over time, aligning with the project’s growth.

Implications

  • Sustained Capital Inflow: By offering higher rewards later, a project can potentially sustain and even increase its capital inflow as the project matures. This can be especially useful in supporting long-term development and operational goals.
  • Potential for Late-Stage Interest: As the reward for holding tokens grows over time, it may attract new investors down the line, drawn by the prospect of higher yields. This can help to maintain a steady interest in the project throughout its lifecycle.
  • Balancing Perception and Reality: Managing the community's expectations is vital. The notion that early participants are at a disadvantage must be addressed through clear communication about the long-term vision and benefits.

In contrast to a linear schedule, a growing token release schedule adds a strategic twist that favors the longevity of stakeholder engagement. It's a model that can create a solid foundation for future growth but requires careful communication and management to keep stakeholders satisfied. Up next, we will look at the shrinking token release schedule, which applies an opposite approach to distribution.

Shrinking Token Release Schedule

The shrinking token release schedule is characterized by a decrease in the number of tokens released as time goes on. This type of schedule is intended to create a sense of urgency and reward early participants with higher initial payouts.

Characteristics

  • Early Bird Incentives: The shrinking schedule is crafted to reward the earliest adopters the most, offering them a larger share of tokens initially. This creates a compelling case for getting involved early in the project's lifecycle.
  • Fear of Missing Out (FOMO): This approach capitalizes on the FOMO effect, incentivizing potential investors to buy in early to maximize their rewards before the release rate decreases.
  • Decreased Inflation Over Time: As fewer tokens are released into circulation later on, the potential inflationary pressure on the token's value is reduced. This can be an attractive feature for investors concerned about long-term value erosion.

Implications

  • Stimulating Early Adoption: By offering more tokens earlier, projects may see a surge in initial capital inflow, providing the necessary funds to kickstart development and fuel early-stage growth.
  • Risk of Decreased Late-Stage Incentives: As the reward diminishes over time, there's a risk that new investors may be less inclined to participate, potentially impacting the project's ability to attract capital in its later stages.
  • Market Perception and Price Dynamics: The market must understand that the shrinking release rate is a deliberate strategy to encourage early investment and sustain the token's value over time. However, this can lead to challenges in maintaining interest as the release rate slows, requiring additional value propositions.

A shrinking token release schedule offers an interesting dynamic for projects seeking to capitalize on early market excitement. While it can generate significant early support, the challenge lies in maintaining momentum as the reward potential decreases. This necessitates a robust project foundation and continued delivery of milestones to retain stakeholder interest.

Dynamic Token Release Schedule

A dynamic token release schedule represents a flexible and adaptive approach to token distribution. Unlike static models, this schedule can adjust the rate of token release based on specific criteria. Example criteria are: project’s milestones, market conditions, or the behavior of token holders. This responsiveness is designed to offer a balanced strategy that can react to the project's needs in real-time.

Characteristics

  • Adaptability: The most significant advantage of a dynamic schedule is its ability to adapt to changing circumstances. This can include varying the release rate to match market demand, project development stages, or other critical factors.
  • Risk Management: By adjusting the flow of tokens in response to market conditions, a dynamic schedule can help mitigate certain risks. For example: inflation, token price volatility, and the impact of market manipulation.
  • Stakeholder Alignment: This schedule can be structured to align incentives with the project's goals. This means rewarding behaviors that contribute to project's longevity, such as holding tokens for certain periods or participating in governance.

Implications

  • Balancing Supply and Demand: A dynamic token release can fine-tune the supply to match demand, aiming to stabilize the token price. This can be particularly effective in avoiding the boom-and-bust cycles that plague many cryptocurrency projects.
  • Investor Engagement: The flexibility of a dynamic schedule keeps investors engaged, as the potential for reward can change in line with project milestones and success markers, maintaining a sense of involvement and investment in the project’s progression.
  • Complexity and Communication: The intricate nature of a dynamic schedule requires clear and transparent communication with stakeholders to ensure understanding of the system. The complexity also demands robust technical implementation to execute the varying release strategies effectively.

Dynamic token release schedule is a sophisticated tool that, when used judiciously, offers great flexibility in navigating unpredictable crypto markets. It requires a careful balance of anticipation, reaction, and communication but also gives opportunity to foster project’s growth.

Conclusion

A linear token release schedule is the epitome of simplicity and fairness, offering a steady and predictable path. The growing schedule promotes long-term investment and project loyalty, potentially leading to sustained growth. In contrast, the shrinking schedule seeks to capitalize on the enthusiasm of early adopters, fostering a vibrant initial ecosystem. Lastly, the dynamic schedule stands out for its intelligent adaptability, aiming to strike a balance between various stakeholder interests and market forces.

The choice of token release schedule should not be made in isolation; it must consider the project's goals, the nature of its community, the volatility of the market, and the overarching vision of the creators.

FAQ

What are the different token release schedules?

  • Linear, growing, shrinking, and dynamic schedules.

How does a linear token release schedule work?

  • Releases tokens at a constant rate over a specified period.

What is the goal of a shrinking token release schedule?

  • Rewards early adopters with more tokens and decreases over time.