The Fundamentals of Token Engineering

Kajetan Olas

06 Mar 2024
The Fundamentals of Token Engineering

As the blockchain space evolves, the complexity of creating sustainable, efficient, and fair systems increases. Token Engineering provides a structured framework to address these challenges. It ensures that tokenomics is designed with a clear understanding of its potential impact on user behavior and system dynamics. This is particularly important in decentralized projects, where traditional control mechanisms are replaced by algorithmic governance.

Understanding Token Engineering

Token Engineering is an emerging field that addresses the systematic design and engineering of blockchain-based tokens. It applies rigorous mathematical methods from the Complex Systems Engineering discipline to tokenomics design. 

The Basis of Token Engineering

The foundation of Token Engineering lies in the realization that tokens are not merely digital assets but pivotal elements that facilitate governance, incentivize desired behaviors, and enable new forms of economic interactions. The discipline draws upon:

  • Complex Systems Science: Understanding the behavior of complex systems is essential for designing token economies that are resilient and adaptable. This involves studying network effects, feedback loops, and emergent behaviors within token ecosystems.
  • Behavioral Economics: Integrating insights from behavioral economics allows for the creation of token models that align with human behaviors and motivations, ensuring that token mechanisms encourage beneficial actions within the network.
  • Cryptoeconomic Protocols: These protocols are the backbone of decentralized networks, securing transactions and interactions without the need for centralized authorities. Token Engineering involves designing these protocols to ensure they are robust against attacks and manipulations.

The Objectives of Token Engineering

The primary objectives of Token Engineering include:

  • Sustainability: Ensuring that the token economy can sustain itself over the long term, through mechanisms that promote balance, reduce volatility, and encourage growth.
  • Security: Designing token systems that are secure against speculative attacks, protecting the integrity of the network and its participants.
  • Efficiency: Creating token economies that facilitate efficient transactions, interactions, and governance processes, minimizing costs and maximizing benefits for all participants.

The Process of Token Engineering

The process of Token Engineering is a methodical approach to designing, implementing, and refining token-based systems. It involves several stages, from the initial conceptualization of a token economy to its deployment and ongoing management. Each stage requires careful consideration of the economic, technical, and social aspects of the system.

Ideation and Objective Setting

The first step in the Token Engineering process is to clearly define the goals and objectives of the token system. This involves identifying the specific behaviors the tokens are meant to incentivize, the roles they will play within the ecosystem, and the values they represent. Objectives might include creating a more efficient payment system, facilitating decentralized governance, or incentivizing certain behaviors among network participants.

Model Development and Simulation

Once the objectives are set, the next step is to develop a model of the token economy. This model should include the mechanisms by which tokens will be issued, distributed, and exchanged, as well as how they will interact with other elements of the ecosystem. The model also needs to account for potential external influences and the behavior of participants. Simulations are then run to test the model under various conditions, allowing engineers to identify potential issues and make adjustments.

Testing and Refinement

After modeling and simulation, the proposed token system enters the testing phase. This can involve both virtual testing environments and real-world pilots or beta tests. During this phase, the focus is on identifying and fixing bugs, assessing the system's resilience to attacks, and ensuring that it behaves as intended under a wide range of conditions. Feedback from these tests is used to refine the model and improve the system's design.

Deployment and Monitoring

With testing and refinement complete, the token system is ready for deployment. This involves launching the token within the intended environment, whether it be a blockchain network, a specific platform, or a broader ecosystem. After deployment, continuous monitoring is crucial to ensure the system operates as expected, to manage any unforeseen issues, and to make necessary adjustments based on evolving conditions and objectives.

Iterative Improvement

Token Engineering is an iterative process. Even after deployment, the system is continually analyzed and improved based on real-world performance and changing conditions. This might involve adjusting token issuance rates, changing incentive mechanisms, or introducing new features to adapt to users' needs and market dynamics.

Different Approaches to Modelling

In the realm of Token Engineering, various modeling techniques are employed to analyze and predict the behavior of the protocol under a multitude of scenarios. Two of the most common models utilized are Monte Carlo simulations and agent-based simulations. These models serve as critical tools for engineers and researchers aiming to design efficient, resilient, and sustainable token-based systems.

Monte Carlo Simulations in Token Engineering

Monte Carlo simulations are a class of computational algorithms that rely on repeated random sampling to obtain numerical results. Within the context of Token Engineering, these simulations are used to model the probability of different outcomes in a token economy. The approach is particularly useful for assessing risk and uncertainty in complex systems where analytical solutions may be unattainable.

Token engineers run thousands or even millions of scenarios, each with a set of randomly generated variables. This allows them to study where all the extreme outputs come from and makes them aware of all unwanted interactions.

Agent-Based Simulations in Token Engineering

Agent-based simulations represent another powerful modeling technique, focusing on the interactions of individual agents within a token economy. These agents, which can represent users, smart contracts, or other entities, operate based on a set of rules and can adapt their behavior in response to the changing state of the system.

This type of simulation is particularly adept at capturing the emergent properties of decentralized systems. By simulating the interactions of multiple agents, token engineers can observe how local behaviors scale up to global system dynamics. Agent-based models are invaluable for studying phenomena related to spreading information. For example, the spread of adoption of new token functionalities, or the resilience of the system against coordinated attacks

Conclusion

Token Engineering is pivotal for the advancement of blockchain and decentralized systems, blending disciplines like economics, game theory, and complex systems science to design robust token economies. Through a detailed process from conception to deployment and beyond, it ensures these economies are adaptable and sustainable amidst the dynamic blockchain landscape.

Rigorous testing holds the promise of making decentralized systems more transparent and secure. As regulations roll out, it might be fundamental in proving the long-term viability of crypto projects to the general public.

If you're looking to design a sustainable tokenomics model for your DeFi project, please reach out to contact@nextrope.com. Our team is ready to help you create a tokenomics structure that aligns with your project's long-term growth and market resilience.

FAQ

What is Token Engineering?

  • It's a field focused on the systematic design and analysis of token-based systems. It integrates engineering principles to ensure that token economies are sustainable and secure.

How does Token Engineering contribute to sustainability and security in token economies?

  • Through modelling and simulations, it makes sure that a project is resilient even to the toughest conditions.

What are the stages involved in the Token Engineering process?

  • The process includes ideation and objective setting, model development and simulation, testing and refinement, deployment and monitoring, and iterative improvement.

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

The Ultimate Web3 Backend Guide: Supercharge dApps with APIs

Tomasz Dybowski

04 Mar 2025
The Ultimate Web3 Backend Guide: Supercharge dApps with APIs

Introduction

Web3 backend development is essential for building scalable, efficient and decentralized applications (dApps) on EVM-compatible blockchains like Ethereum, Polygon, and Base. A robust Web3 backend enables off-chain computations, efficient data management and better security, ensuring seamless interaction between smart contracts, databases and frontend applications.

Unlike traditional Web2 applications that rely entirely on centralized servers, Web3 applications aim to minimize reliance on centralized entities. However, full decentralization isn't always possible or practical, especially when it comes to high-performance requirements, user authentication or storing large datasets. A well-structured backend in Web3 ensures that these limitations are addressed, allowing for a seamless user experience while maintaining decentralization where it matters most.

Furthermore, dApps require efficient backend solutions to handle real-time data processing, reduce latency, and provide smooth user interactions. Without a well-integrated backend, users may experience delays in transactions, inconsistencies in data retrieval, and inefficiencies in accessing decentralized services. Consequently, Web3 backend development is a crucial component in ensuring a balance between decentralization, security, and functionality.

This article explores:

  • When and why Web3 dApps need a backend
  • Why not all applications should be fully on-chain
  • Architecture examples of hybrid dApps
  • A comparison between APIs and blockchain-based logic

This post kicks off a Web3 backend development series, where we focus on the technical aspects of implementing Web3 backend solutions for decentralized applications.

Why Do Some Web3 Projects Need a Backend?

Web3 applications seek to achieve decentralization, but real-world constraints often necessitate hybrid architectures that include both on-chain and off-chain components. While decentralized smart contracts provide trustless execution, they come with significant limitations, such as high gas fees, slow transaction finality, and the inability to store large amounts of data. A backend helps address these challenges by handling logic and data management more efficiently while still ensuring that core transactions remain secure and verifiable on-chain.

Moreover, Web3 applications must consider user experience. Fully decentralized applications often struggle with slow transaction speeds, which can negatively impact usability. A hybrid backend allows for pre-processing operations off-chain while committing final results to the blockchain. This ensures that users experience fast and responsive interactions without compromising security and transparency.

While decentralization is a core principle of blockchain technology, many dApps still rely on a Web2-style backend for practical reasons:

1. Performance & Scalability in Web3 Backend Development

  • Smart contracts are expensive to execute and require gas fees for every interaction.
  • Offloading non-essential computations to a backend reduces costs and improves performance.
  • Caching and load balancing mechanisms in traditional backends ensure smooth dApp performance and improve response times for dApp users.
  • Event-driven architectures using tools like Redis or Kafka can help manage asynchronous data processing efficiently.

2. Web3 APIs for Data Storage and Off-Chain Access

  • Storing large amounts of data on-chain is impractical due to high costs.
  • APIs allow dApps to store & fetch off-chain data (e.g. user profiles, transaction history).
  • Decentralized storage solutions like IPFS, Arweave and Filecoin can be used for storing immutable data (e.g. NFT metadata), but a Web2 backend helps with indexing and querying structured data efficiently.

3. Advanced Logic & Data Aggregation in Web3 Backend

  • Some dApps need complex business logic that is inefficient or impossible to implement in a smart contract.
  • Backend APIs allow for data aggregation from multiple sources, including oracles (e.g. Chainlink) and off-chain databases.
  • Middleware solutions like The Graph help in indexing blockchain data efficiently, reducing the need for on-chain computation.

4. User Authentication & Role Management in Web3 dApps

  • Many applications require user logins, permissions or KYC compliance.
  • Blockchain does not natively support session-based authentication, requiring a backend for handling this logic.
  • Tools like Firebase Auth, Auth0 or Web3Auth can be used to integrate seamless authentication for Web3 applications.

5. Cost Optimization with Web3 APIs

  • Every change in a smart contract requires a new audit, costing tens of thousands of dollars.
  • By handling logic off-chain where possible, projects can minimize expensive redeployments.
  • Using layer 2 solutions like Optimism, Arbitrum and zkSync can significantly reduce gas costs.

Web3 Backend Development: Tools and Technologies

A modern Web3 backend integrates multiple tools to handle smart contract interactions, data storage, and security. Understanding these tools is crucial to developing a scalable and efficient backend for dApps. Without the right stack, developers may face inefficiencies, security risks, and scaling challenges that limit the adoption of their Web3 applications.

Unlike traditional backend development, Web3 requires additional considerations, such as decentralized authentication, smart contract integration, and secure data management across both on-chain and off-chain environments.

Here’s an overview of the essential Web3 backend tech stack:

1. API Development for Web3 Backend Services

  • Node.js is the go-to backend runtime good for Web3 applications due to its asynchronous event-driven architecture.
  • NestJS is a framework built on top of Node.js, providing modular architecture and TypeScript support for structured backend development.

2. Smart Contract Interaction Libraries for Web3 Backend

  • Ethers.js and Web3.js are TypeScript/JavaScript libraries used for interacting with Ethereum-compatible blockchains.

3. Database Solutions for Web3 Backend

  • PostgreSQL: Structured database used for storing off-chain transactional data.
  • MongoDB: NoSQL database for flexible schema data storage.
  • Firebase: A set of tools used, among other things, for user authentication.
  • The Graph: Decentralized indexing protocol used to query blockchain data efficiently.

4. Cloud Services and Hosting for Web3 APIs

When It Doesn't Make Sense to Go Fully On-Chain

Decentralization is valuable, but it comes at a cost. Fully on-chain applications suffer from performance limitations, high costs and slow execution speeds. For many use cases, a hybrid Web3 architecture that utilizes a mix of blockchain-based and off-chain components provides a more scalable and cost-effective solution.

In some cases, forcing full decentralization is unnecessary and inefficient. A hybrid Web3 architecture balances decentralization and practicality by allowing non-essential logic and data storage to be handled off-chain while maintaining trustless and verifiable interactions on-chain.

The key challenge when designing a hybrid Web3 backend is ensuring that off-chain computations remain auditable and transparent. This can be achieved through cryptographic proofs, hash commitments and off-chain data attestations that anchor trust into the blockchain while improving efficiency.

For example, Optimistic Rollups and ZK-Rollups allow computations to happen off-chain while only submitting finalized data to Ethereum, reducing fees and increasing throughput. Similarly, state channels enable fast, low-cost transactions that only require occasional settlement on-chain.

A well-balanced Web3 backend architecture ensures that critical dApp functionalities remain decentralized while offloading resource-intensive tasks to off-chain systems. This makes applications cheaper, faster and more user-friendly while still adhering to blockchain's principles of transparency and security.

Example: NFT-based Game with Off-Chain Logic

Imagine a Web3 game where users buy, trade and battle NFT-based characters. While asset ownership should be on-chain, other elements like:

  • Game logic (e.g., matchmaking, leaderboard calculations)
  • User profiles & stats
  • Off-chain notifications

can be handled off-chain to improve speed and cost-effectiveness.

Architecture Diagram

Below is an example diagram showing how a hybrid Web3 application splits responsibilities between backend and blockchain components.

Hybrid Web3 Architecture

Comparing Web3 Backend APIs vs. Blockchain-Based Logic

FeatureWeb3 Backend (API)Blockchain (Smart Contracts)
Change ManagementCan be updated easilyEvery change requires a new contract deployment
CostTraditional hosting feesHigh gas fees + costly audits
Data StorageCan store large datasetsLimited and expensive storage
SecuritySecure but relies on centralized infrastructureFully decentralized & trustless
PerformanceFast response timesLimited by blockchain throughput

Reducing Web3 Costs with AI Smart Contract Audit

One of the biggest pain points in Web3 development is the cost of smart contract audits. Each change to the contract code requires a new audit, often costing tens of thousands of dollars.

To address this issue, Nextrope is developing an AI-powered smart contract auditing tool, which:

  • Reduces audit costs by automating code analysis.
  • Speeds up development cycles by catching vulnerabilities early.
  • Improves security by providing quick feedback.

This AI-powered solution will be a game-changer for the industry, making smart contract development more cost-effective and accessible.

Conclusion

Web3 backend development plays a crucial role in scalable and efficient dApps. While full decentralization is ideal in some cases, many projects benefit from a hybrid architecture, where off-chain components optimize performance, reduce costs and improve user experience.

In future posts in this Web3 backend series, we’ll explore specific implementation details, including:

  • How to design a Web3 API for dApps
  • Best practices for integrating backend services
  • Security challenges and solutions

Stay tuned for the next article in this series!

Nextrope Launches “AI-Powered Smart Contract Auditing” Project

Miłosz Mach

03 Mar 2025
Nextrope Launches “AI-Powered Smart Contract Auditing” Project

Next Enterprises Sp. z o.o. is implementing a project co-financed by the European Funds, titled "Smart Contract Auditing with Artificial Intelligence". The goal of the project is to develop and deploy an advanced AI model that enables efficient analysis, vulnerability detection, and security auditing of smart contracts, taking into account their complexity and uniqueness.

Planned Project Tasks:

  • Development of an AI model trained on Solidity keywords;
  • Creation of an effective model in simulated conditions;
  • Analysis of the unpredictability of compiled code execution within the Ethereum Virtual Machine (EVM) in the context of the developed model in a controlled environment;
  • Validation of the model in real-world conditions.

Target Groups:

  • Specialized audit firms focused on smart contract security;
  • Companies developing and/or deploying smart contracts on various platforms;
  • Exchanges, wallet providers, and decentralized applications (dApps) in the blockchain sector;
  • Government agencies or industry compliance bodies responsible for blockchain technology regulation;
  • Smart contract security specialists and developers.

The implementation of the developed tool will enable automated and efficient auditing of smart contracts. The model will provide detailed insights and recommendations for optimizing transaction costs and improving contract performance. As a result, users will be able to make informed decisions, enhancing security and operational efficiency within the blockchain ecosystem. Key benefits stem from the model’s training on smart contract code, audit data, and detected vulnerabilities. Additionally, the incorporation of chaos theory principles will allow for more precise risk and anomaly forecasting.

By deploying this advanced AI model, the project will enhance the security, efficiency, and accessibility of blockchain technology for end users. This will translate into tangible social and economic benefits, including:

  1. Economic Security
  2. Business and Financial Security
  3. Increased Public Trust
  4. Optimization of Transaction Costs
  5. Support for Innovation and Entrepreneurship
  6. Education and Public Awareness

Project Value: 4,173,953.24 PLN
European Funds Contribution: 3,090,156.39 PLN

#EUFunds #EuropeanFunds

Challenges in Smart Contract Auditing

Smart contracts have become a fundamental component of blockchain technology, eliminating intermediaries, and automating processes. However, their growing significance also introduces new challenges, particularly in ensuring security and compliance with industry standards.

Traditional smart contract audits rely heavily on manual code reviews, which are expensive, time-consuming, and prone to human error. As cyber threats continue to evolve, the use of advanced technologies to support the auditing process is imperative.

The Role of AI in Data Analysis

Artificial intelligence (AI) introduces a new paradigm in smart contract security assessment by leveraging its capability to process vast amounts of data and identify patterns that may go unnoticed with traditional auditing methods. AI enables:

  • Automated code analysis and real-time detection of potential vulnerabilities,
  • Optimization of auditing processes by reducing human errors and improving threat identification efficiency,
  • Better adaptation to evolving regulatory requirements and emerging threats within the blockchain ecosystem,
  • Rapid analysis of large datasets, allowing for quick insights and the detection of non-obvious dependencies in smart contract code.

By utilizing AI, the auditing process becomes more comprehensive, precise, and scalable, enabling continuous risk monitoring and adaptation to new attack vectors.

A New Era of Smart Contract Security with AI

With the support of European Funds under the European Funds for a Modern Economy (FENG) program, we are conducting research on next-generation blockchain auditing methods, reinforcing Nextrope’s position as a leader in innovative technology solutions.

The "Smart Contract Auditing with Artificial Intelligence (AI)" project contributes to key aspects of blockchain security by:

  • Automating smart contract audits, accelerating verification processes, and improving their accuracy,
  • Optimizing costs, making professional audits more accessible to a broader range of entities,
  • Raising security standards and enhancing regulatory compliance,
  • Increasing trust in smart contracts, fostering broader technology adoption.

Interested in learning more about our project or discovering how to utilize AI in your company? 📩 Contact us at contact@nextrope.com for further details!

Tagi