Behavioral Economics in Token Design

Kajetan Olas

22 Apr 2024
Behavioral Economics in Token Design

Behavioral economics is a field that explores the effects of psychological factors on economic decision-making. This branch of study is especially pertinent while designing a token since user perception can significantly impact a token's adoption.

We will delve into how token design choices, such as staking yields, token inflation, and lock-up periods, influence consumer behavior. Research studies reveal that the most significant factor for a token's attractiveness isn’t its functionality, but its past price performance. This underscores the impact of speculative factors. Tokens that have shown previous price increases are preferred over those with more beneficial economic features.

Understanding Behavioral Tokenomics

Understanding User Motivations

The design of a cryptocurrency token can significantly influence user behavior by leveraging common cognitive biases and decision-making processes. For instance, the concept of "scarcity" can create a perceived value increase, prompting users to buy or hold a token in anticipation of future gains. Similarly, "loss aversion," a foundational principle of behavioral economics, suggests that the pain of losing is psychologically more impactful than the pleasure of an equivalent gain. In token design, mechanisms that minimize perceived losses (e.g. anti-dumping measures) can encourage long-term holding.

Incentives and Rewards

Behavioral economics also provides insight into how incentives can be structured to maximize user participation. Cryptocurrencies often use tokens as a form of reward for various behaviors, including mining, staking, or participating in governance through voting. The way these rewards are framed and distributed can greatly affect their effectiveness. For example, offering tokens as rewards for achieving certain milestones can tap into the 'endowment effect,' where people ascribe more value to things simply because they own them.

Social Proof and Network Effects

Social proof, where individuals copy the behavior of others, plays a crucial role in the adoption of tokens. Tokens that are seen being used and promoted by influential figures within the community can quickly gain traction, as new users emulate successful investors. The network effect further amplifies this, where the value of a token increases as more people start using it. This can be seen in the rapid growth of tokens like Ethereum, where the broad adoption of its smart contract functionality created a snowball effect, attracting even more developers and users.

Token Utility and Behavioral Levers

The utility of a token—what it can be used for—is also crucial. Tokens designed to offer real-world applications beyond mere financial speculation can provide more stable value retention. Integrating behavioral economics into utility design involves creating tokens that not only serve practical purposes but also resonate on an emotional level with users, encouraging engagement and investment. For example, tokens that offer governance rights might appeal to users' desire for control and influence within a platform, encouraging them to hold rather than sell.

Understanding Behavioral Tokenomics

Intersection of Behavioral Economics and Tokenomics

Behavioral economics examines how psychological influences, various biases, and the way in which information is framed affect individual decisions. In tokenomics, these factors can significantly impact the success or failure of a cryptocurrency by influencing user behavior towards investment

Influence of Psychological Factors on Token Attraction

A recent study observed that the attractiveness of a token often hinges more on its historical price performance than on intrinsic benefits like yield returns or innovative economic models. This emphasizes the fact that the cryptocurrency sector is still young, and therefore subject to speculative behaviors

The Effect of Presentation and Context

Another interesting finding from the study is the impact of how tokens are presented. In scenarios where tokens are evaluated separately, the influence of their economic attributes on consumer decisions is minimal. However, when tokens are assessed side by side, these attributes become significantly more persuasive. This highlights the importance of context in economic decision-making—a core principle of behavioral economics. It’s easy to translate this into real-life example - just think about the concept of staking yields. When told that the yield on e.g. Cardano is 5% you might not think much of it. But, if you were simultaneously told that Anchor’s yield is 19%, then that 5% seems like a tragic deal.

Implications for Token Designers

The application of behavioral economics to the design of cryptocurrency tokens involves leveraging human psychology to encourage desired behaviors. Here are several core principles of behavioral economics and how they can be effectively utilized in token design:

Leveraging Price Performance

Studies show clearly: “price going up” tends to attract users more than most other token attributes. This finding implies that token designers need to focus on strategies that can showcase their economic effects in the form of price increases. This means that e.g. it would be more beneficial to conduct a buy-back program than to conduct an airdrop.

Scarcity and Perceived Value

Scarcity triggers a sense of urgency and increases perceived value. Cryptocurrency tokens can be designed to have a limited supply, mimicking the scarcity of resources like gold. This not only boosts the perceived rarity and value of the tokens but also drives demand due to the "fear of missing out" (FOMO). By setting a cap on the total number of tokens, developers can create a natural scarcity that may encourage early adoption and long-term holding.

Initial Supply Considerations

The initial supply represents the number of tokens that are available in circulation immediately following the token's launch. The chosen number can influence early market perceptions. For instance, a large initial supply might suggest a lower value per token, which could attract speculators. Data shows that tokens with low nominal value are highly volatile and generally underperform. Understanding how the initial supply can influence investor behavior is important for ensuring the token's stability.

Managing Maximum Supply and Inflation

A finite maximum supply can safeguard the token against inflation, potentially enhancing its value by ensuring scarcity. On the other hand, the inflation rate, which defines the pace at which new tokens are introduced, influences the token's value and user trust.

Investors in cryptocurrency markets show a notable aversion to deflationary tokenomics. Participants are less likely to invest in tokens with a deflationary framework, viewing them as riskier and potentially less profitable. Research suggests that while moderate inflation can be perceived neutrally or even positively, high inflation does not enhance attractiveness, and deflation is distinctly unfavorable.

Source: Behavioral Tokenomics: Consumer Perceptions of Cryptocurrency Token Design

These findings suggest that token designers should avoid high deflation rates, which could deter investment and user engagement. Instead, a balanced approach to inflation, avoiding extremes, appears to be preferred among cryptocurrency investors.

Loss Aversion

People tend to prefer avoiding losses to acquiring equivalent gains; this is known as loss aversion. In token design, this can be leveraged by introducing mechanisms that protect against losses, such as staking rewards that offer consistent returns or features that minimize price volatility. Additionally, creating tokens that users can "earn" through participation or contribution to the network can tap into this principle by making users feel they are safeguarding an investment or adding protective layers to their holdings.

Social Proof

Social proof is a powerful motivator in user adoption and engagement. When potential users see others adopting a token, especially influential figures or peers, they are more likely to perceive it as valuable and trustworthy. Integrating social proof into token marketing strategies, such as showcasing high-profile endorsements or community support, can significantly enhance user acquisition and retention.

Mental Accounting

Mental accounting involves how people categorize and treat money differently depending on its source or intended use. Tokens can be designed to encourage specific spending behaviors by being categorized for certain types of transactions—like tokens that are specifically for governance, others for staking, and others still for transaction fees. By distinguishing tokens in this way, users can more easily rationalize holding or spending them based on their designated purposes.

Endowment Effect

The endowment effect occurs when people value something more highly simply because they own it. For tokenomics, creating opportunities for users to feel ownership can increase attachment and perceived value. This can be done through mechanisms that reward users with tokens for participation or contribution, thus making them more reluctant to part with their holdings because they value them more highly.


By considering how behavioral factors influence market perception, token engineers can create much more effective ecosystems. Ensuring high demand for the token, means ensuring proper funding for the project in general.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.


How does the initial supply of a token influence its market perception?

  • The initial supply sets the perceived value of a token; a larger supply might suggest a lower per-token value.

Why is the maximum supply important in token design?

  • A finite maximum supply signals scarcity, helping protect against inflation and enhance long-term value.

How do investors perceive inflation and deflation in cryptocurrencies?

  • Investors generally dislike deflationary tokens and view them as risky. Moderate inflation is seen neutrally or positively, while high inflation is not favored.

Most viewed

Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Applying Game Theory in Token Design

Kajetan Olas

16 Apr 2024
Applying Game Theory in Token Design

Blockchain technology allows for aligning incentives among network participants by rewarding desired behaviors with tokens.
But there is more to it than simply fostering cooperation. Game theory allows for designing incentive-machines that can't be turned-off and resemble artificial life.

Emergent Optimization

Game theory provides a robust framework for analyzing strategic interactions with mathematical models, which is particularly useful in blockchain environments where multiple stakeholders interact within a set of predefined rules. By applying this framework to token systems, developers can design systems that influence the emergent behaviors of network participants. This ensures the stability and effectiveness of the ecosystem.

Bonding Curves

Bonding curves are tool used in token design to manage the relationship between price and token supply predictably. Essentially, a bonding curve is a mathematical curve that defines the price of a token based on its supply. The more tokens that are bought, the higher the price climbs, and vice versa. This model incentivizes early adoption and can help stabilize a token’s economy over time.

For example, a bonding curve could be designed to slow down price increases after certain milestones are reached, thus preventing speculative bubbles and encouraging steadier, more organic growth.

The Case of Bitcoin

Bitcoin’s design incorporates game theory, most notably through its consensus mechanism of proof-of-work (PoW). Its reward function optimizes for security (hashrate) by optimizing for maximum electricity usage. Therefore, optimizing for its legitimate goal of being secure also inadvertently optimizes for corrupting natural environment. Another emergent outcome of PoW is the creation of mining pools, that increase centralization.

The Paperclip Maximizer and the dangers of blockchain economy

What’s the connection between AI from the story and decentralized economies? Blockchain-based incentive systems also can’t be turned off. This means that if we design an incentive system that optimizes towards a wrong objective, we might be unable to change it. Bitcoin critics argue that the PoW consensus mechanism optimizes toward destroying planet Earth.

Layer 2 Solutions

Layer 2 solutions are built on the understanding that the security provided by this core kernel of certainty can be used as an anchor. This anchor then supports additional economic mechanisms that operate off the blockchain, extending the utility of public blockchains like Ethereum. These mechanisms include state channels, sidechains, or plasma, each offering a way to conduct transactions off-chain while still being able to refer back to the anchored security of the main chain if necessary.

Conceptual Example of State Channels

State channels allow participants to perform numerous transactions off-chain, with the blockchain serving as a backstop in case of disputes or malfeasance.

Consider two players, Alice and Bob, who want to play a game of tic-tac-toe with stakes in Ethereum. The naive approach would be to interact directly with a smart contract for every move, which would be slow and costly. Instead, they can use a state channel for their game.

  1. Opening the Channel: They start by deploying a "Judge" smart contract on Ethereum, which holds the 1 ETH wager. The contract knows the rules of the game and the identities of the players.
  2. Playing the Game: Alice and Bob play the game off-chain by signing each move as transactions, which are exchanged directly between them but not broadcast to the blockchain. Each transaction includes a nonce to ensure moves are kept in order.
  3. Closing the Channel: When the game ends, the final state (i.e., the sequence of moves) is sent to the Judge contract, which pays out the wager to the winner after confirming both parties agree on the outcome.

A threat stronger than the execution

If Bob tries to cheat by submitting an old state where he was winning, Alice can challenge this during a dispute period by submitting a newer signed state. The Judge contract can verify the authenticity and order of these states due to the nonces, ensuring the integrity of the game. Thus, the mere threat of execution (submitting the state to the blockchain and having the fraud exposed) secures the off-chain interactions.

Game Theory in Practice

Understanding the application of game theory within blockchain and token ecosystems requires a structured approach to analyzing how stakeholders interact, defining possible actions they can take, and understanding the causal relationships within the system. This structured analysis helps in creating effective strategies that ensure the system operates as intended.

Stakeholder Analysis

Identifying Stakeholders

The first step in applying game theory effectively is identifying all relevant stakeholders within the ecosystem. This includes direct participants such as users, miners, and developers but also external entities like regulators, potential attackers, and partner organizations. Understanding who the stakeholders are and what their interests and capabilities are is crucial for predicting how they might interact within the system.

Stakeholders in blockchain development for systems engineering

Assessing Incentives and Capabilities

Each stakeholder has different motivations and resources at their disposal. For instance, miners are motivated by block rewards and transaction fees, while users seek fast, secure, and cheap transactions. Clearly defining these incentives helps in predicting how changes to the system’s rules and parameters might influence their behaviors.

Defining Action Space

Possible Actions

The action space encompasses all possible decisions or strategies stakeholders can employ in response to the ecosystem's dynamics. For example, a miner might choose to increase computational power, a user might decide to hold or sell tokens, and a developer might propose changes to the protocol.

Artonomus, Github

Constraints and Opportunities

Understanding the constraints (such as economic costs, technological limitations, and regulatory frameworks) and opportunities (such as new technological advancements or changes in market demand) within which these actions take place is vital. This helps in modeling potential strategies stakeholders might adopt.

Artonomus, Github

Causal Relationships Diagram

Mapping Interactions

Creating a diagram that represents the causal relationships between different actions and outcomes within the ecosystem can illuminate how complex interactions unfold. This diagram helps in identifying which variables influence others and how they do so, making it easier to predict the outcomes of certain actions.

Artonomus, Github

Analyzing Impact

By examining the causal relationships, developers and system designers can identify critical leverage points where small changes could have significant impacts. This analysis is crucial for enhancing system stability and ensuring its efficiency.

Feedback Loops

Understanding feedback loops within a blockchain ecosystem is critical as they can significantly amplify or mitigate the effects of changes within the system. These loops can reinforce or counteract trends, leading to rapid growth or decline.

Reinforcing Loops

Reinforcing loops are feedback mechanisms that amplify the effects of a trend or action. For example, increased adoption of a blockchain platform can lead to more developers creating applications on it, which in turn leads to further adoption. This positive feedback loop can drive rapid growth and success.

Death Spiral

Conversely, a death spiral is a type of reinforcing loop that leads to negative outcomes. An example might be the increasing cost of transaction fees leading to decreased usage of the blockchain, which reduces the incentive for miners to secure the network, further decreasing system performance and user adoption. Identifying potential death spirals early is crucial for maintaining the ecosystem's health.

The Death Spiral: How Terra's Algorithmic Stablecoin Came Crashing Down
the-death-spiral-how-terras-algorithmic-stablecoin-came-crashing-down/, Forbes


The fundamental advantage of token-based systems is being able to reward desired behavior. To capitalize on that possibility, token engineers put careful attention into optimization and designing incentives for long-term growth.


  1. What does game theory contribute to blockchain token design?
    • Game theory optimizes blockchain ecosystems by structuring incentives that reward desired behavior.
  2. How do bonding curves apply game theory to improve token economics?
    • Bonding curves set token pricing that adjusts with supply changes, strategically incentivizing early purchases and penalizing speculation.
  3. What benefits do Layer 2 solutions provide in the context of game theory?
    • Layer 2 solutions leverage game theory, by creating systems where the threat of reporting fraudulent behavior ensures honest participation.

Token Engineering Process

Kajetan Olas

13 Apr 2024
Token Engineering Process

Token Engineering is an emerging field that addresses the systematic design and engineering of blockchain-based tokens. It applies rigorous mathematical methods from the Complex Systems Engineering discipline to tokenomics design.

In this article, we will walk through the Token Engineering Process and break it down into three key stages. Discovery Phase, Design Phase, and Deployment Phase.

Discovery Phase of Token Engineering Process

The first stage of the token engineering process is the Discovery Phase. It focuses on constructing high-level business plans, defining objectives, and identifying problems to be solved. That phase is also the time when token engineers first define key stakeholders in the project.

Defining the Problem

This may seem counterintuitive. Why would we start with the problem when designing tokenomics? Shouldn’t we start with more down-to-earth matters like token supply? The answer is No. Tokens are a medium for creating and exchanging value within a project’s ecosystem. Since crypto projects draw their value from solving problems that can’t be solved through TradFi mechanisms, their tokenomics should reflect that. 

The industry standard, developed by McKinsey & Co. and adapted to token engineering purposes by Outlier Ventures, is structuring the problem through a logic tree, following MECE.
MECE stands for Mutually Exclusive, Collectively Exhaustive. Mutually Exclusive means that problems in the tree should not overlap. Collectively Exhaustive means that the tree should cover all issues.

In practice, the “Problem” should be replaced by a whole problem statement worksheet. The same will hold for some of the boxes.
A commonly used tool for designing these kinds of diagrams is the Miro whiteboard.

Identifying Stakeholders and Value Flows in Token Engineering

This part is about identifying all relevant actors in the ecosystem and how value flows between them. To illustrate what we mean let’s consider an example of NFT marketplace. In its case, relevant actors might be sellers, buyers, NFT creators, and a marketplace owner. Possible value flow when conducting a transaction might be: buyer gets rid of his tokens, seller gets some of them, marketplace owner gets some of them as fees, and NFT creators get some of them as royalties.

Incentive Mechanisms Canvas

The last part of what we consider to be in the Discovery Phase is filling the Incentive Mechanisms Canvas. After successfully identifying value flows in the previous stage, token engineers search for frictions to desired behaviors and point out the undesired behaviors. For example, friction to activity on an NFT marketplace might be respecting royalty fees by marketplace owners since it reduces value flowing to the seller.


Design Phase of Token Engineering Process

The second stage of the Token Engineering Process is the Design Phase in which you make use of high-level descriptions from the previous step to come up with a specific design of the project. This will include everything that can be usually found in crypto whitepapers (e.g. governance mechanisms, incentive mechanisms, token supply, etc). After finishing the design, token engineers should represent the whole value flow and transactional logic on detailed visual diagrams. These diagrams will be a basis for creating mathematical models in the Deployment Phase. 

Token Engineering Artonomous Design Diagram
Artonomous design diagram, source: Artonomous GitHub

Objective Function

Every crypto project has some objective. The objective can consist of many goals, such as decentralization or token price. The objective function is a mathematical function assigning weights to different factors that influence the main objective in the order of their importance. This function will be a reference for machine learning algorithms in the next steps. They will try to find quantitative parameters (e.g. network fees) that maximize the output of this function.
Modified Metcalfe’s Law can serve as an inspiration during that step. It’s a framework for valuing crypto projects, but we believe that after adjustments it can also be used in this context.

Deployment Phase of Token Engineering Process

The Deployment Phase is final, but also the most demanding step in the process. It involves the implementation of machine learning algorithms that test our assumptions and optimize quantitative parameters. Token Engineering draws from Nassim Taleb’s concept of Antifragility and extensively uses feedback loops to make a system that gains from arising shocks.

Agent-based Modelling 

In agent-based modeling, we describe a set of behaviors and goals displayed by each agent participating in the system (this is why previous steps focused so much on describing stakeholders). Each agent is controlled by an autonomous AI and continuously optimizes his strategy. He learns from his experience and can mimic the behavior of other agents if he finds it effective (Reinforced Learning). This approach allows for mimicking real users, who adapt their strategies with time. An example adaptive agent would be a cryptocurrency trader, who changes his trading strategy in response to experiencing a loss of money.

Monte Carlo Simulations

Token Engineers use the Monte Carlo method to simulate the consequences of various possible interactions while taking into account the probability of their occurrence. By running a large number of simulations it’s possible to stress-test the project in multiple scenarios and identify emergent risks.

Testnet Deployment

If possible, it's highly beneficial for projects to extend the testing phase even further by letting real users use the network. Idea is the same as in agent-based testing - continuous optimization based on provided metrics. Furthermore, in case the project considers airdropping its tokens, giving them to early users is a great strategy. Even though part of the activity will be disingenuine and airdrop-oriented, such strategy still works better than most.

Time Duration

Token engineering process may take from as little as 2 weeks to as much as 5 months. It depends on the project category (Layer 1 protocol will require more time, than a simple DApp), and security requirements. For example, a bank issuing its digital token will have a very low risk tolerance.

Required Skills for Token Engineering

Token engineering is a multidisciplinary field and requires a great amount of specialized knowledge. Key knowledge areas are:

  • Systems Engineering
  • Machine Learning
  • Market Research
  • Capital Markets
  • Current trends in Web3
  • Blockchain Engineering
  • Statistics


The token engineering process consists of 3 steps: Discovery Phase, Design Phase, and Deployment Phase. It’s utilized mostly by established blockchain projects, and financial institutions like the International Monetary Fund. Even though it’s a very resource-consuming process, we believe it’s worth it. Projects that went through scrupulous design and testing before launch are much more likely to receive VC funding and be in the 10% of crypto projects that survive the bear market. Going through that process also has a symbolic meaning - it shows that the project is long-term oriented.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.


What does token engineering process look like?

  • Token engineering process is conducted in a 3-step methodical fashion. This includes Discovery Phase, Design Phase, and Deployment Phase. Each of these stages should be tailored to the specific needs of a project.

Is token engineering meant only for big projects?

  • We recommend that even small projects go through a simplified design and optimization process. This increases community's trust and makes sure that the tokenomics doesn't have any obvious flaws.

How long does the token engineering process take?

  • It depends on the project and may range from 2 weeks to 5 months.