Integration of MetaMask wallet in React application

Paulina Lewandowska

19 Dec 2022
Integration of MetaMask wallet in React application

Introduction

In decentralized applications, users typically need a crypto wallet to interact with the blockchain. To enable this, developers working on the frontend layer must integrate their application with users' wallet applications. This article is intended for developers using the React library who want to create user interfaces with the popular browser plugin, MetaMask. Here is a step-by-step guide on how to integrate a React application with MetaMask.

A basic application in React

The source code of the application written for this tutarial can be found at this link. I used the following libraries to create the application:

To work with this tutorial, you can use the application provided at the link above, or you can configure the application yourself in React with the help of, for example, create-react-app or vite.

Once our application is configured, you need to make sure that we have all the necessary dependencies installed, to do this, run the command

npm install wagmi ethers

To prepare the application, I also used a component library called Material-ui, if you also want to use it, install the following packages with the command:

npm install @mui/material @emotion/react @emotion/styled

Once the configuration is complete and all the necessary dependencies are installed, we can move on to the next point.

Wagmi Library

To integrate with the MetaMask wallet application, we will use a dedicated library for React called wagmi that contains a sizable number of hooks and functions needed for daily blockchain interactions in frontend applications.

The first step will be to configure the library, to do this we need to wrap our application in a WagmiConfig component passing a client variable with our configuration:

import { WagmiConfig, createClient } from "wagmi";
import { getDefaultProvider } from "ethers";
 
import { Home } from "./pages";
import "./styles.css";
 
const client = createClient({
 autoConnect: true,
 provider: getDefaultProvider()
});
 
export default function App() {
 return (
   <WagmiConfig client={client}>
     <Home />
   </WagmiConfig>
 );
}

All available configuration options can be found at this link in the official wagmi documentation

Connecting the MetaMask wallet

Once we have completed the configuration of the wagmi library, we can move on to creating the component responsible for connecting to our wallet. The hooks available in the blibliothek will be helpful in the implementation.

To access the function that will allow us to make a request to connect the wallet, use the useConnect() hooka. To indicate that the wallet we want to connect to is MetaMask, pass the created instance of the InjectedConnector class in the configuration object to the hooka under the connecter key

import { useConnect } from "wagmi";
import { InjectedConnector } from "wagmi/dist/connectors/injected";
 
 ...
 
 const { connect } = useConnect({
   connector: new InjectedConnector()
 });
 
 ...

Hook returns us a connect function that we can call, for example, when the button is clicked.

 ...
 
<Button onClick={() => connect()}>Connect</Button>
 
 ...

To get information about the connected wallet or its connection status, you can use the useAccount() hookup, which returns us such information as:

  • the address of the connected wallet
  • whether the wallet connection action is in progress
  • whether the user's wallet is currently connected in the application
...
 
 const { address, isConnected, isConnecting } = useAccount();
 
 ...

If the user of our application managed to connect the wallet we should also allow him to disconnect it, for this we need to use the disconnect function, which we can access with the help of the hookup useDisconnect()

 ...
 
 const { disconnect } = useDisconnect();
 
 ...

With the help of these three simple hooks, we are able to handle wallet connection. The full source code of the component that handles the connection from the sample application:

import { useConnect, useDisconnect, useAccount } from "wagmi";
import { InjectedConnector } from "wagmi/dist/connectors/injected";
import { Card, Button, Heading } from "../../components";
import Typography from "@mui/material/Typography";
import { WalletInfo } from "./WalletInfo";
 
export const WalletConnect = () => {
 const { isConnected, isConnecting } = useAccount();
 
 const { connect } = useConnect({
   connector: new InjectedConnector()
 });
 
 const { disconnect } = useDisconnect();
 
 return (
   <Card>
     <Heading sx={{ mb: 2 }}>
       {isConnected ? "Your connected wallet:" : "Connect your MetaMask"}
     </Heading>
 
     {isConnecting && <Typography>Connecting...</Typography>}
 
     {isConnected ? (
       <>
         <WalletInfo />
         <Button sx={{ mt: 2 }} onClick={() => disconnect()}>
           Disconnect
         </Button>
       </>
     ) : (
       <Button
         disabled={isConnecting}
         sx={{ mt: 2 }}
         onClick={() => connect()}
       >
         Connect
       </Button>
     )}
   </Card>
 );
};

In the above example there is a <WalletInfo /> component, which we will use to display information about the connected wallet, we will deal with its creation in the next step.

Displaying information about the connected wallet

The next step will display to the user information about the connected wallet such as:

  • Wallet address
  • The current ETH balance of the wallet

To do this, we will prepare two simple components <WalletAddress/> and <WalletBalance/> and , which we will then put into the <WalletInfo/> component:

The address of the currently connected wallet

import { WalletAddress } from "./WalletAddress";
import { WalletBalance } from "./WalletBalance";
 
export const WalletInfo = () => {
 return (
   <div>
     <WalletAddress />
     <WalletBalance />
   </div>
 );
};
import { useAccount } from "wagmi";
import Typography from "@mui/material/Typography";
 
export const WalletAddress = () => {
 const { address } = useAccount();
 return (
   <Typography>
     <strong>Address: </strong>
     {address}
   </Typography>
 );
};

In order to display the connected wallet, we will use the previously mentioned useAccount() hookup, which returns us the address variable. The implementation of a simple component to display the address looks like this:

import { useAccount } from "wagmi";
import Typography from "@mui/material/Typography";
 
export const WalletAddress = () => {
 const { address } = useAccount();
 return (
   <Typography>
     <strong>Address: </strong>
     {address}
   </Typography>
 );
};

Balance of the currently connected wallet

The wagmi library also has a useBalance() hook, which will make the process of retrieving the current wallet balance much easier for us. The process of fetching this value from the blockchain is asynchronous, so this hook returns on, among other things, such information in variables as:

  • isLoading - whether the balance download is in progress
  • isFetched - whether the wallet's balance has been downloaded
  • isError - whether an error occurred while downloading the data
  • data - object containing such fields as:
    • value - user balance in WEI units
    • formatted - user's balance formatted to ETH units
    • symbol - Symbol of the asset for which the balance was downloaded
    • decimals - the number of decimal places that the number describing the quantity of the asset can have

For a better understanding of what a WEI, ETH unit or decimals parameter is, I encourage you to read these articles:

To indicate for which wallet we want to retrieve the balance of funds, we need to pass the address of this wallet as a parameter when calling the hookah as follows, to do this we can use the useAccount() hookah again from the previous step:

 ...
 
 const { address } = useAccount();
 const { isLoading, isFetched, isError, data } = useBalance({ address });
 
 ...

With this information, we are able to implement an entire component with support for the data loading process:

import { useAccount, useBalance } from "wagmi";
import Typography from "@mui/material/Typography";
import Skeleton from "@mui/material/Skeleton";
 
export const WalletBalance = () => {
 const { address } = useAccount();
 const { isLoading, isFetched, isError, data } = useBalance({ address });
 
 return (
   <Typography>
     {isLoading && <Skeleton width={200} />}
     {isFetched && (
       <>
         <strong>Balance: </strong>
         {data?.formatted} {data?.symbol}
       </>
     )}
     {isError && "Fetching balance failed!"}
   </Typography>
 );
};

Summary

The application presented here is just an example, in production applications developers often have to deal with integrating multiple wallet applications, supporting connectivity on multiple blockchain networks, and interactions of connected wallets with smart contracts. All of these functionalities and much more are supported by the wagmi library presented in this turorial. Therefore, I encourage you to study the documentation of this library to see what capabilities it offers.

Tagi

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Aethir Tokenomics – Case Study

Kajetan Olas

22 Nov 2024
Aethir Tokenomics – Case Study

Authors of the contents are not affiliated to the reviewed project in any way and none of the information presented should be taken as financial advice.

In this article we analyze tokenomics of Aethir - a project providing on-demand cloud compute resources for the AI, Gaming, and virtualized compute sectors.
Aethir aims to aggregate enterprise-grade GPUs from multiple providers into a DePIN (Decentralized Physical Infrastructure Network). Its competitive edge comes from utlizing the GPUs for very specific use-cases, such as low-latency rendering for online games.
Due to decentralized nature of its infrastructure Aethir can meet the demands of online-gaming in any region. This is especially important for some gamer-abundant regions in Asia with underdeveloped cloud infrastructure that causes high latency ("lags").
We will analyze Aethir's tokenomics, give our opinion on what was done well, and provide specific recommendations on how to improve it.

Evaluation Summary

Aethir Tokenomics Structure

The total supply of ATH tokens is capped at 42 billion ATH. This fixed cap provides a predictable supply environment, and the complete emissions schedule is listed here. As of November 2024 there are approximately 5.2 Billion ATH in circulation. In a year from now (November 2025), the circulating supply will almost triple, and will amount to approximately 15 Billion ATH. By November 2028, today's circulating supply will be diluted by around 86%.

From an investor standpoint the rational decision would be to stake their tokens and hope for rewards that will balance the inflation. Currently the estimated APR for 3-year staking is 195% and for 4-year staking APR is 261%. The rewards are paid out weekly. Furthermore, stakers can expect to get additional rewards from partnered AI projects.

Staking Incentives

Rewards are calculated based on the staking duration and staked amount. These factors are equally important and they linearly influence weekly rewards. This means that someone who stakes 100 ATH for 2 weeks will have the same weekly rewards as someone who stakes 200 ATH for 1 week. This mechanism greatly emphasizes long-term holding. That's because holding a token makes sense only if you go for long-term staking. E.g. a whale staking $200k with 1 week lockup. will have the same weekly rewards as person staking $1k with 4 year lockup. Furthermore the ATH staking rewards are fixed and divided among stakers. Therefore Increase of user base is likely to come with decrease in rewards.
We believe the main weak-point of Aethirs staking is the lack of equivalency between rewards paid out to the users and value generated for the protocol as a result of staking.

Token Distribution

The token distribution of $ATH is well designed and comes with long vesting time-frames. 18-month cliff and 36-moths subsequent linear vesting is applied to team's allocation. This is higher than industry standard and is a sign of long-term commitment.

  • Checkers and Compute Providers: 50%
  • Ecosystem: 15%
  • Team: 12.5%
  • Investors: 11.5%
  • Airdrop: 6%
  • Advisors: 5%

Aethir's airdrop is divided into 3 phases to ensure that only loyal users get rewarded. This mechanism is very-well thought and we rate it highly. It fosters high community engagement within the first months of the project and sets the ground for potentially giving more-control to the DAO.

Governance and Community-Led Development

Aethir’s governance model promotes community-led decision-making in a very practical way. Instead of rushing with creation of a DAO for PR and marketing purposes Aethir is trying to make it the right way. They support projects building on their infrastructure and regularly share updates with their community in the most professional manner.

We believe Aethir would benefit from implementing reputation boosted voting. An example of such system is described here. The core assumption is to abandon the simplistic: 1 token = 1 vote and go towards: Votes = tokens * reputation_based_multiplication_factor.

In the attached example, reputation_based_multiplication_factor rises exponentially with the number of standard deviations above norm, with regard to user's rating. For compute compute providers at Aethir, user's rating could be replaced by provider's uptime.

Perspectives for the future

While it's important to analyze aspects such as supply-side tokenomics, or governance, we must keep in mind that 95% of project's success depends on demand-side. In this regard the outlook for Aethir may be very bright. The project declares $36M annual reccuring revenue. Revenue like this is very rare in the web3 space. Many projects are not able to generate any revenue after succesfull ICO event, due to lack fo product-market-fit.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.

Nextrope Partners with Hacken to Enhance Blockchain Security

Miłosz

21 Nov 2024
Nextrope Partners with Hacken to Enhance Blockchain Security

Nextrope announces a strategic partnership with Hacken, a renowned blockchain security auditor. It marks a significant step in delivering reliable decentralized solutions. After several successful collaborations resulting in flawless smart contract audits, the alliance solidifies the synergy between Nextrope's innovative blockchain development and Hacken's top-tier security auditing services. Together, we aim to set new benchmarks, ensuring that security is an integral part of blockchain technology.

Strengthening Blockchain Security

The partnership aims to fortify the security protocols within blockchain ecosystems. By integrating Hacken's comprehensive security audits with Nextrope's cutting-edge blockchain solutions, we are poised to offer unparalleled security features in our projects.

"Blockchain security should never be an afterthought"

"Our partnership with Hacken underscores our dedication to embedding security at the core of our blockchain solutions. Together, we're building a safer future for the industry."

said Mateusz Mach, CEO of Nextrope

About Nextrope

Nextrope is a forward-thinking blockchain development house specializing in creating innovative solutions for businesses worldwide. With a team of experienced developers and blockchain experts, Nextrope delivers high-quality, scalable, and secure blockchain applications tailored to meet the unique needs of each client.

About Hacken

Hacken is a leading blockchain security auditor known for its rigorous smart contract audits and security assessments. With a mission to make the industry safer, Hacken provides complex security services that help companies identify and mitigate vulnerabilities in their applications.

Looking Ahead

As a joint mission, both Nextrope and Hacken are committed to continuous innovation. We look forward to the exciting opportunities this partnership will bring and are eager to implement a more secure blockchain environment for all.

For more information, please contact:

Nextrope

Hacken

Join us on our journey to deliver top-notch blockchain tech and a safer future for the industry!