Making the Most of AI and GPT-like Models: An examination of the industries most suitable for integration

Paulina Lewandowska

19 Jan 2023
Making the Most of AI and GPT-like Models: An examination of the industries most suitable for integration

Introduction

The way businesses work is being revolutionized by artificial intelligence (AI) and language models like GPT. AI is quickly becoming a crucial tool for businesses wanting to stay competitive in today's fast-paced economy, from automating monotonous processes to offering insightful analysis and predictions. In this article, we'll look at how companies are using GPT-like models and AI to boost productivity, boost efficiency, and boost revenue. We will look at the numerous uses of AI in the corporate world, from customer service to financial analysis. We'll also look at how GPT-like models are specifically employed in content generation and natural language processing to scale up communication and human-computer interaction.

AI implementation by sector

AI and models like GPT can be particularly beneficial in a variety of sectors, including but not limited to:

SectorApplications
Natural Language Processing (NLP)Language Translation, Text Summarization, Question Answering
Content CreationAutomated written content generation (news articles, product descriptions, social media posts)
BusinessAutomating tasks (customer service, sales, marketing), Financial forecasting and analysis
HealthcareMedical Diagnosis, Drug Discovery, Personalized Medicine
EducationPersonalized learning experience, Grading and providing feedback
Transport and logisticsSelf-driving cars, Supply chain management
RoboticsObject recognition, Navigation, Manipulation
GamingRealistic and engaging gameplay, New types of games

GPT-like Models in NLP and Content Creation: Automating Writing and Personalizing Content

GPT-like models have demonstrated substantial skills in the areas of Natural Language Processing (NLP) and content generation. Language translation, text summarization, and question answering are just a few of the natural language processing activities that are catered to by language models like GPT-3.

Automated writing is one of the most well-liked uses of GPT-like models in NLP and content generation. GPT-3 is capable of producing written content such as blog entries, product descriptions, and social media updates automatically. By automating the process of content production, GPT-3 can save enterprises a significant amount of time and resources because it can produce cohesive and grammatically sound text. This makes GPT-3 perfect for jobs like writing reports, email drafts, and chatbot scripts for customer assistance.

GPT-like models have uses in personalized content creation for clients in addition to automated authoring. By evaluating consumer data and creating content that is specific to the user's interests and preferences, GPT-3, for instance, can be used to provide personalized product suggestions or targeted advertising. This might aid companies in enhancing their marketing initiatives and raising client involvement.

Automation: Using AI to Simplify Business Processes 

Automating processes is one of the most obvious ways that organizations are utilizing AI. AI can handle a wide range of monotonous activities, from customer care chatbots to automated financial analysis, freeing up employees to concentrate on more worthwhile work. Simple customer care requests, like responding to frequently asked queries, can be handled by AI-powered chatbots, while more sophisticated systems can even manage complicated problems. Additionally, financial analysis tasks like fraud detection and trend prediction can be automated using machine learning models.

AI-Assist in Healthcare Revolution: Diagnosis and Treatment 

AI is being applied in a variety of ways in the healthcare sector to improve efficiency and precision. AI-powered systems, for instance, can help clinicians diagnose illnesses by reviewing medical images and making recommendations. This raises diagnostic precision while lowering the possibility of human error. Drug development is another area where AI is being used in healthcare. AI is capable of analyzing enormous amounts of data, including genetic data, to find potential novel treatments and medications. AI is also being used to develop individualized treatment regimens for patients, which take into consideration aspects like medical history, genetics, and other personal traits.

Intelligent tutoring and Personalized Learning with AI in Education 

Similar to how it is being used in business, AI is being used in education to help teachers grade assignments and give feedback to students. Based on a student's skills, shortcomings, and preferred learning style, AI is used to generate customised learning plans for them. Additionally, it contributes to the development of intelligent tutoring programs that support teachers by offering tailored feedback and assistance to students both within and outside of the classroom. AI is also being used to automate grading and assessment, which can assist save teachers time and increase the effectiveness of the educational system.

AI-Optimized Logistics and Transportation: Supply Chain Management to Self-Driving Cars 

AI is also being used by the transportation and logistics sector to boost productivity and cut expenses. The development of self-driving automobiles is one example of how AI can be used to enhance road safety and lower the frequency of accidents brought on by human mistake. Another area where AI may be used to optimize is supply chain management. This is done by forecasting demand, analyzing data, and making better decisions. AI can also improve fleet management by tracking the whereabouts and condition of vehicles, anticipating maintenance requirements, and increasing productivity.

Enhancing Capabilities and Real-world Functionality of AI-Powered Robotics 

AI is being applied in the field of robotics to enhance the capabilities and usefulness of robots. Robots are now able to recognize and interact with items in the real world thanks to AI, for instance in the field of object recognition. Another area where AI is applied to help robots autonomously navigate in challenging settings is navigation. AI can also be utilized to enhance the manipulation abilities of robots, allowing them to carry out a larger variety of activities, like grabbing and manipulating real-world objects. Robots are improving their ability to work in real-world settings and do tasks that were previously insurmountable thanks to the incorporation of AI.

From Realistic Gameplay to Game Development: AI in the Gaming Industry 

AI is also employed in the video game industry to build new game genres and more realistic and captivating gameplay. By offering more lifelike AI-controlled characters and environments, game AI is one application of AI that aims to improve gameplay realism and engagement.

AI can also be applied to the creation of new game mechanisms and game genres, such as games that adjust to the preferences and skill level of the player. AI can speed up the process of finding and fixing flaws in games, giving gamers a better gaming experience. Game testing can also be improved by AI. We may anticipate even more advancements in the application of AI to gaming as it continues to develop, pushing the limits of what is feasible in the gaming sector.

Conclusion

In conclusion, the incorporation of AI and models resembling the GPT into numerous industries and businesses is proving to be quite advantageous. These technologies are transforming how we conduct business, improve medical diagnosis in healthcare, personalize education, optimize logistics and transportation, and even transform the gaming sector. GPT-like models have enormous potential for content creation and natural language processing. Businesses should be aware of the advantages and potential of these technologies. The integration of AI and GPT-like models in several industries has a promising future.

Tagi

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

AI in Real Estate: How Does It Support the Housing Market?

Miłosz Mach

18 Mar 2025
AI in Real Estate: How Does It Support the Housing Market?

The digital transformation is reshaping numerous sectors of the economy, and real estate is no exception. By 2025, AI will no longer be a mere gadget but a powerful tool that facilitates customer interactions, streamlines decision-making processes, and optimizes sales operations. Simultaneously, blockchain technology ensures security, transparency, and scalability in transactions. With this article, we launch a series of publications exploring AI in business, focusing today on the application of artificial intelligence within the real estate industry.

AI vs. Tradition: Key Implementations of AI in Real Estate

Designing, selling, and managing properties—traditional methods are increasingly giving way to data-driven decision-making.

Breakthroughs in Customer Service

AI-powered chatbots and virtual assistants are revolutionizing how companies interact with their customers. These tools handle hundreds of inquiries simultaneously, personalize offers, and guide clients through the purchasing process. Implementing AI agents can lead to higher-quality leads for developers and automate responses to most standard customer queries. However, technical challenges in deploying such systems include:

  • Integration with existing real estate databases: Chatbots must have access to up-to-date listings, prices, and availability.
  • Personalization of communication: Systems must adapt their interactions to individual customer needs.
  • Management of industry-specific knowledge: Chatbots require specialized expertise about local real estate markets.

Advanced Data Analysis

Cognitive AI systems utilize deep learning to analyze complex relationships within the real estate market, such as macroeconomic trends, local zoning plans, and user behavior on social media platforms. Deploying such solutions necessitates:

  • Collecting high-quality historical data.
  • Building infrastructure for real-time data processing.
  • Developing appropriate machine learning models.
  • Continuously monitoring and updating models based on new data.

Intelligent Design

Generative artificial intelligence is revolutionizing architectural design. These advanced algorithms can produce dozens of building design variants that account for site constraints, legal requirements, energy efficiency considerations, and aesthetic preferences.

Optimizing Building Energy Efficiency

Smart building management systems (BMS) leverage AI to optimize energy consumption while maintaining resident comfort. Reinforcement learning algorithms analyze data from temperature, humidity, and air quality sensors to adjust heating, cooling, and ventilation parameters effectively.

Integration of AI with Blockchain in Real Estate

The convergence of AI with blockchain technology opens up new possibilities for the real estate sector. Blockchain is a distributed database where information is stored in immutable "blocks." It ensures transaction security and data transparency while AI analyzes these data points to derive actionable insights. In practice, this means that ownership histories, all transactions, and property modifications are recorded in an unalterable format, with AI aiding in interpreting these records and informing decision-making processes.

AI has the potential to bring significant value to the real estate sector—estimated between $110 billion and $180 billion by experts at McKinsey & Company.

Key development directions over the coming years include:

  • Autonomous negotiation systems: AI agents equipped with game theory strategies capable of conducting complex negotiations.
  • AI in urban planning: Algorithms designed to plan city development and optimize spatial allocation.
  • Property tokenization: Leveraging blockchain technology to divide properties into digital tokens that enable fractional investment opportunities.

Conclusion

For companies today, the question is no longer "if" but "how" to implement AI to maximize benefits and enhance competitiveness. A strategic approach begins with identifying specific business challenges followed by selecting appropriate technologies.

What values could AI potentially bring to your organization?
  • Reduction of operational costs through automation
  • Enhanced customer experience and shorter transaction times
  • Increased accuracy in forecasts and valuations, minimizing business risks
Nextrope Logo

Want to implement AI in your real estate business?

Nextrope specializes in implementing AI and blockchain solutions tailored to specific business needs. Our expertise allows us to:

  • Create intelligent chatbots that serve customers 24/7
  • Implement analytical systems for property valuation
  • Build secure blockchain solutions for real estate transactions
Schedule a free consultation

Or check out other articles from the "AI in Business" series

AI-Driven Frontend Automation: Elevating Developer Productivity to New Heights

Gracjan Prusik

11 Mar 2025
AI-Driven Frontend Automation: Elevating Developer Productivity to New Heights

AI Revolution in the Frontend Developer's Workshop

In today's world, programming without AI support means giving up a powerful tool that radically increases a developer's productivity and efficiency. For the modern developer, AI in frontend automation is not just a curiosity, but a key tool that enhances productivity. From automatically generating components, to refactoring, and testing – AI tools are fundamentally changing our daily work, allowing us to focus on the creative aspects of programming instead of the tedious task of writing repetitive code. In this article, I will show how these tools are most commonly used to work faster, smarter, and with greater satisfaction.

This post kicks off a series dedicated to the use of AI in frontend automation, where we will analyze and discuss specific tools, techniques, and practical use cases of AI that help developers in their everyday tasks.

AI in Frontend Automation – How It Helps with Code Refactoring

One of the most common uses of AI is improving code quality and finding errors. These tools can analyze code and suggest optimizations. As a result, we will be able to write code much faster and significantly reduce the risk of human error.

How AI Saves Us from Frustrating Bugs

Imagine this situation: you spend hours debugging an application, not understanding why data isn't being fetched. Everything seems correct, the syntax is fine, yet something isn't working. Often, the problem lies in small details that are hard to catch when reviewing the code.

Let’s take a look at an example:

function fetchData() {
    fetch("htts://jsonplaceholder.typicode.com/posts")
      .then((response) => response.json())
      .then((data) => console.log(data))
      .catch((error) => console.error(error));
}

At first glance, the code looks correct. However, upon running it, no data is retrieved. Why? There’s a typo in the URL – "htts" instead of "https." This is a classic example of an error that could cost a developer hours of frustrating debugging.

When we ask AI to refactor this code, not only will we receive a more readable version using newer patterns (async/await), but also – and most importantly – AI will automatically detect and fix the typo in the URL:

async function fetchPosts() {
    try {
      const response = await fetch(
        "https://jsonplaceholder.typicode.com/posts"
      );
      const data = await response.json();
      console.log(data);
    } catch (error) {
      console.error(error);
    }
}

How AI in Frontend Automation Speeds Up UI Creation

One of the most obvious applications of AI in frontend development is generating UI components. Tools like GitHub Copilot, ChatGPT, or Claude can generate component code based on a short description or an image provided to them.

With these tools, we can create complex user interfaces in just a few seconds. Generating a complete, functional UI component often takes less than a minute. Furthermore, the generated code is typically error-free, includes appropriate animations, and is fully responsive, adapting to different screen sizes. It is important to describe exactly what we expect.

Here’s a view generated by Claude after entering the request: “Based on the loaded data, display posts. The page should be responsive. The main colors are: #CCFF89, #151515, and #E4E4E4.”

Generated posts view

AI in Code Analysis and Understanding

AI can analyze existing code and help understand it, which is particularly useful in large, complex projects or code written by someone else.

Example: Generating a summary of a function's behavior

Let’s assume we have a function for processing user data, the workings of which we don’t understand at first glance. AI can analyze the code and generate a readable explanation:

function processUserData(users) {
  return users
    .filter(user => user.isActive) // Checks the `isActive` value for each user and keeps only the objects where `isActive` is true
    .map(user => ({ 
      id: user.id, // Retrieves the `id` value from each user object
      name: `${user.firstName} ${user.lastName}`, // Creates a new string by combining `firstName` and `lastName`
      email: user.email.toLowerCase(), // Converts the email address to lowercase
    }));
}

In this case, AI not only summarizes the code's functionality but also breaks down individual operations into easier-to-understand segments.

AI in Frontend Automation – Translations and Error Detection

Every frontend developer knows that programming isn’t just about creatively building interfaces—it also involves many repetitive, tedious tasks. One of these is implementing translations for multilingual applications (i18n). Adding translations for each key in JSON files and then verifying them can be time-consuming and error-prone.

However, AI can significantly speed up this process. Using ChatGPT, DeepSeek, or Claude allows for automatic generation of translations for the user interface, as well as detecting linguistic and stylistic errors.

Example:

We have a translation file in JSON format:

{
  "welcome_message": "Welcome to our application!",
  "logout_button": "Log out",
  "error_message": "Something went wrong. Please try again later."
}

AI can automatically generate its Polish version:

{
  "welcome_message": "Witaj w naszej aplikacji!",
  "logout_button": "Wyloguj się",
  "error_message": "Coś poszło nie tak. Spróbuj ponownie później."
}

Moreover, AI can detect spelling errors or inconsistencies in translations. For example, if one part of the application uses "Log out" and another says "Exit," AI can suggest unifying the terminology.

This type of automation not only saves time but also minimizes the risk of human errors. And this is just one example – AI also assists in generating documentation, writing tests, and optimizing performance, which we will discuss in upcoming articles.

Summary

Artificial intelligence is transforming the way frontend developers work daily. From generating components and refactoring code to detecting errors, automating testing, and documentation—AI significantly accelerates and streamlines the development process. Without these tools, we would lose a lot of valuable time, which we certainly want to avoid.

In the next parts of this series, we will cover topics such as:

Stay tuned to keep up with the latest insights!