Web3 and AI: Enhancing Security, Efficiency, and User Experience

Paulina Lewandowska

12 Jan 2023
Web3 and AI: Enhancing Security, Efficiency, and User Experience

Introduction: Web3 and AI - A Match Made in the Digital World

Through machine learning and intelligent automation, artificial intelligence (AI) has the potential to revolutionize a variety of industries and applications. AI has the potential to improve the features and functionality of blockchain-based goods and services in the world of web3(third generation of the World Wide Web) providing users with even more value.

The term "Web3" describes the Internet's decentralized, peer-to-peer functionality made possible by blockchain technology. It enables the development of programs and services that run on a decentralized network of computers rather than being managed by a single organization. The addition of AI to web3 has the potential to greatly improve the functionality and capabilities of these goods and services while also enhancing user experience, security, and effectiveness.

This article will explore the usefulness of AI in web3, looking at the various applications of AI in blockchain-based goods and services. We will examine the advantages of AI integration in web3 as well as how AI will affect web3 and blockchain technology in the future. Come along as we explore the intriguing potential of AI in the web3 world.

AI 101: A Beginner's Guide to Artificial Intelligence in Web3/Blockchain

But what exactly is artificial intelligence, and how can it be applied to products for the web, blockchain, and cryptocurrency?

Artificial intelligence (AI) is the capacity of machines to carry out tasks that normally require human intelligence, such as problem-solving, learning, and judgment. This is accomplished with the aid of machine learning algorithms, which give computers the ability to examine data, spot trends, and then predict the future or make decisions based on those trends.

In order to improve the functionality and capabilities of web3/blockchain products, AI can be applied in a number of different ways. Several instances include:

  • AI can be used to enable chat bots or smart contracts that can comprehend and respond to human language, making them more user-friendly and effective. This is known as natural language processing.
  • Predictive analytics: AI can analyze market trends or asset pricing data to make future predictions that may be useful to traders or investors.
  • Artificial intelligence (AI) can be used to spot unusual patterns or behaviors that might be signs of fraud, enhancing the security of blockchain-based systems.
  • Supply chain management: AI can be used to improve efficiency and cut waste by optimizing the flow of resources and goods through a supply chain.

AI in Action: Real-World Examples of Artificial Intelligence in Web3/Blockchain Products

Let's examine some specific applications of AI in the market now that we have a better understanding of what AI is and how it can be applied to web3/blockchain products.

  1. AI-powered chatbots are a useful tool for customer service or support because they can comprehend and respond to human language. Natural language processing can also be used to improve the usability and comprehension of smart contracts, which are self-executing contracts with the terms of the agreement written in code.
  2. Another application of AI in web3/blockchain products is predictive analytics. AI can analyze market trends or asset pricing data to make future predictions, which can be useful for traders or investors. For instance, an AI-powered trading platform built on blockchain technology could analyze market data and suggest trades to users.
  3. Fraud detection in web3/blockchain products can also be done using AI. Data analysis using machine learning algorithms can spot unusual patterns or behaviors that could be signs of fraud, enhancing system security. An AI-based payment platform, for instance, could be used to identify and stop fraudulent transactions.
  4. Another application of AI in web3/blockchain products is predictive analytics. AI can analyze market trends or asset pricing data to make future predictions, which can be useful for traders or investors. For instance, an AI-powered trading platform built on blockchain technology could analyze market data and suggest trades to users.

Benefits of using AI in web3/blockchain products

So far, we've seen how AI can be applied to web3/blockchain products in a number of ways to improve their capabilities and functionality. But what advantages do these products' use of AI offer?

BenefitDescription
Improved user experienceNatural language processing and predictive analytics are made possible by AI, which makes web and blockchain products more approachable and simple to use.
Enhanced security and reliabilityAI can identify and correct errors in code or data, as well as detect and stop fraudulent activity, increasing the overall security and dependability of web3/blockchain products.
Increased efficiency and automationAI can automate or improve supply chain management, freeing up time and resources for more difficult tasks..

All things considered, the incorporation of AI in web3/blockchain products has the potential to significantly improve user experience, security, and efficiency. Future applications and advantages of AI technology are likely to be even more creative as the field develops.

Web3/Blockchain's Future with AI: A Look at the Potential of Artificial Intelligence in Decentralized Technologies

As we've seen, AI has the potential to significantly improve the functionality and capabilities of web3/blockchain products, adding value for users and advancing a number of technical aspects. But what part will AI play in the development of blockchain and web3 technology?

  • Integration of AI into web3/blockchain products and services could improve decentralized finance (DeFi) platforms, allowing for more transparent and efficient financial transactions. Decentralized applications (DApps) could benefit from improved performance and user experience, and blockchain networks could benefit from increased security and dependability.
  • New blockchain protocols and standards could be created and put into use by using AI to analyze data and find patterns that could be used to create more secure or efficient blockchain systems. It could also be used to evaluate new protocols and help roll out updates and improvements to current systems.
  • Resolving issues with web3 and blockchain technology: AI could be used to improve the efficiency of blockchain networks or to create new applications and use cases that promote technology adoption. Additionally, it could be utilized to increase the scalability of blockchain systems or to help create new governance or regulatory frameworks..

Conclusion: Is AI an integral part of the web3 ecosystem?

As a result, it is evident that AI has the potential to significantly improve the functionality and capabilities of web3/blockchain products, enhancing user experience and advancing various facets of technology. The use of AI in web3/blockchain products spans a wide range of areas, including supply chain optimization, fraud detection, and predictive analytics.

But does the web3 ecosystem include AI in its entirety? Although it is unquestionably a potent tool that can benefit web3/blockchain products and services greatly, it is important to understand that AI is only one part of the ecosystem. Decentralized networks, blockchain technology, and other innovations all contribute to the web3 ecosystem and its future development.

The use and integration of AI with other technologies will ultimately determine its place in the web3 ecosystem. As AI technologies develop, it's critical to think about the ethical, legal, and social ramifications of their use and to make sure they're applied responsibly and advantageously.

Tagi

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Behavioral Economics in Token Design

Kajetan Olas

22 Apr 2024
Behavioral Economics in Token Design

Behavioral economics is a field that explores the effects of psychological factors on economic decision-making. This branch of study is especially pertinent while designing a token since user perception can significantly impact a token's adoption.

We will delve into how token design choices, such as staking yields, token inflation, and lock-up periods, influence consumer behavior. Research studies reveal that the most significant factor for a token's attractiveness isn’t its functionality, but its past price performance. This underscores the impact of speculative factors. Tokens that have shown previous price increases are preferred over those with more beneficial economic features.

Understanding Behavioral Tokenomics

Understanding User Motivations

The design of a cryptocurrency token can significantly influence user behavior by leveraging common cognitive biases and decision-making processes. For instance, the concept of "scarcity" can create a perceived value increase, prompting users to buy or hold a token in anticipation of future gains. Similarly, "loss aversion," a foundational principle of behavioral economics, suggests that the pain of losing is psychologically more impactful than the pleasure of an equivalent gain. In token design, mechanisms that minimize perceived losses (e.g. anti-dumping measures) can encourage long-term holding.

Incentives and Rewards

Behavioral economics also provides insight into how incentives can be structured to maximize user participation. Cryptocurrencies often use tokens as a form of reward for various behaviors, including mining, staking, or participating in governance through voting. The way these rewards are framed and distributed can greatly affect their effectiveness. For example, offering tokens as rewards for achieving certain milestones can tap into the 'endowment effect,' where people ascribe more value to things simply because they own them.

Social Proof and Network Effects

Social proof, where individuals copy the behavior of others, plays a crucial role in the adoption of tokens. Tokens that are seen being used and promoted by influential figures within the community can quickly gain traction, as new users emulate successful investors. The network effect further amplifies this, where the value of a token increases as more people start using it. This can be seen in the rapid growth of tokens like Ethereum, where the broad adoption of its smart contract functionality created a snowball effect, attracting even more developers and users.

Token Utility and Behavioral Levers

The utility of a token—what it can be used for—is also crucial. Tokens designed to offer real-world applications beyond mere financial speculation can provide more stable value retention. Integrating behavioral economics into utility design involves creating tokens that not only serve practical purposes but also resonate on an emotional level with users, encouraging engagement and investment. For example, tokens that offer governance rights might appeal to users' desire for control and influence within a platform, encouraging them to hold rather than sell.

Understanding Behavioral Tokenomics

Intersection of Behavioral Economics and Tokenomics

Behavioral economics examines how psychological influences, various biases, and the way in which information is framed affect individual decisions. In tokenomics, these factors can significantly impact the success or failure of a cryptocurrency by influencing user behavior towards investment

Influence of Psychological Factors on Token Attraction

A recent study observed that the attractiveness of a token often hinges more on its historical price performance than on intrinsic benefits like yield returns or innovative economic models. This emphasizes the fact that the cryptocurrency sector is still young, and therefore subject to speculative behaviors

The Effect of Presentation and Context

Another interesting finding from the study is the impact of how tokens are presented. In scenarios where tokens are evaluated separately, the influence of their economic attributes on consumer decisions is minimal. However, when tokens are assessed side by side, these attributes become significantly more persuasive. This highlights the importance of context in economic decision-making—a core principle of behavioral economics. It’s easy to translate this into real-life example - just think about the concept of staking yields. When told that the yield on e.g. Cardano is 5% you might not think much of it. But, if you were simultaneously told that Anchor’s yield is 19%, then that 5% seems like a tragic deal.

Implications for Token Designers

The application of behavioral economics to the design of cryptocurrency tokens involves leveraging human psychology to encourage desired behaviors. Here are several core principles of behavioral economics and how they can be effectively utilized in token design:

Leveraging Price Performance

Studies show clearly: “price going up” tends to attract users more than most other token attributes. This finding implies that token designers need to focus on strategies that can showcase their economic effects in the form of price increases. This means that e.g. it would be more beneficial to conduct a buy-back program than to conduct an airdrop.

Scarcity and Perceived Value

Scarcity triggers a sense of urgency and increases perceived value. Cryptocurrency tokens can be designed to have a limited supply, mimicking the scarcity of resources like gold. This not only boosts the perceived rarity and value of the tokens but also drives demand due to the "fear of missing out" (FOMO). By setting a cap on the total number of tokens, developers can create a natural scarcity that may encourage early adoption and long-term holding.

Initial Supply Considerations

The initial supply represents the number of tokens that are available in circulation immediately following the token's launch. The chosen number can influence early market perceptions. For instance, a large initial supply might suggest a lower value per token, which could attract speculators. Data shows that tokens with low nominal value are highly volatile and generally underperform. Understanding how the initial supply can influence investor behavior is important for ensuring the token's stability.

Managing Maximum Supply and Inflation

A finite maximum supply can safeguard the token against inflation, potentially enhancing its value by ensuring scarcity. On the other hand, the inflation rate, which defines the pace at which new tokens are introduced, influences the token's value and user trust.

Investors in cryptocurrency markets show a notable aversion to deflationary tokenomics. Participants are less likely to invest in tokens with a deflationary framework, viewing them as riskier and potentially less profitable. Research suggests that while moderate inflation can be perceived neutrally or even positively, high inflation does not enhance attractiveness, and deflation is distinctly unfavorable.

Source: Behavioral Tokenomics: Consumer Perceptions of Cryptocurrency Token Design

These findings suggest that token designers should avoid high deflation rates, which could deter investment and user engagement. Instead, a balanced approach to inflation, avoiding extremes, appears to be preferred among cryptocurrency investors.

Loss Aversion

People tend to prefer avoiding losses to acquiring equivalent gains; this is known as loss aversion. In token design, this can be leveraged by introducing mechanisms that protect against losses, such as staking rewards that offer consistent returns or features that minimize price volatility. Additionally, creating tokens that users can "earn" through participation or contribution to the network can tap into this principle by making users feel they are safeguarding an investment or adding protective layers to their holdings.

Social Proof

Social proof is a powerful motivator in user adoption and engagement. When potential users see others adopting a token, especially influential figures or peers, they are more likely to perceive it as valuable and trustworthy. Integrating social proof into token marketing strategies, such as showcasing high-profile endorsements or community support, can significantly enhance user acquisition and retention.

Mental Accounting

Mental accounting involves how people categorize and treat money differently depending on its source or intended use. Tokens can be designed to encourage specific spending behaviors by being categorized for certain types of transactions—like tokens that are specifically for governance, others for staking, and others still for transaction fees. By distinguishing tokens in this way, users can more easily rationalize holding or spending them based on their designated purposes.

Endowment Effect

The endowment effect occurs when people value something more highly simply because they own it. For tokenomics, creating opportunities for users to feel ownership can increase attachment and perceived value. This can be done through mechanisms that reward users with tokens for participation or contribution, thus making them more reluctant to part with their holdings because they value them more highly.

Conclusion

By considering how behavioral factors influence market perception, token engineers can create much more effective ecosystems. Ensuring high demand for the token, means ensuring proper funding for the project in general.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.

FAQ

How does the initial supply of a token influence its market perception?

  • The initial supply sets the perceived value of a token; a larger supply might suggest a lower per-token value.

Why is the maximum supply important in token design?

  • A finite maximum supply signals scarcity, helping protect against inflation and enhance long-term value.

How do investors perceive inflation and deflation in cryptocurrencies?

  • Investors generally dislike deflationary tokens and view them as risky. Moderate inflation is seen neutrally or positively, while high inflation is not favored.

Applying Game Theory in Token Design

Kajetan Olas

16 Apr 2024
Applying Game Theory in Token Design

Blockchain technology allows for aligning incentives among network participants by rewarding desired behaviors with tokens.
But there is more to it than simply fostering cooperation. Game theory allows for designing incentive-machines that can't be turned-off and resemble artificial life.

Emergent Optimization

Game theory provides a robust framework for analyzing strategic interactions with mathematical models, which is particularly useful in blockchain environments where multiple stakeholders interact within a set of predefined rules. By applying this framework to token systems, developers can design systems that influence the emergent behaviors of network participants. This ensures the stability and effectiveness of the ecosystem.

Bonding Curves

Bonding curves are tool used in token design to manage the relationship between price and token supply predictably. Essentially, a bonding curve is a mathematical curve that defines the price of a token based on its supply. The more tokens that are bought, the higher the price climbs, and vice versa. This model incentivizes early adoption and can help stabilize a token’s economy over time.

For example, a bonding curve could be designed to slow down price increases after certain milestones are reached, thus preventing speculative bubbles and encouraging steadier, more organic growth.

The Case of Bitcoin

Bitcoin’s design incorporates game theory, most notably through its consensus mechanism of proof-of-work (PoW). Its reward function optimizes for security (hashrate) by optimizing for maximum electricity usage. Therefore, optimizing for its legitimate goal of being secure also inadvertently optimizes for corrupting natural environment. Another emergent outcome of PoW is the creation of mining pools, that increase centralization.

The Paperclip Maximizer and the dangers of blockchain economy

What’s the connection between AI from the story and decentralized economies? Blockchain-based incentive systems also can’t be turned off. This means that if we design an incentive system that optimizes towards a wrong objective, we might be unable to change it. Bitcoin critics argue that the PoW consensus mechanism optimizes toward destroying planet Earth.

Layer 2 Solutions

Layer 2 solutions are built on the understanding that the security provided by this core kernel of certainty can be used as an anchor. This anchor then supports additional economic mechanisms that operate off the blockchain, extending the utility of public blockchains like Ethereum. These mechanisms include state channels, sidechains, or plasma, each offering a way to conduct transactions off-chain while still being able to refer back to the anchored security of the main chain if necessary.

Conceptual Example of State Channels

State channels allow participants to perform numerous transactions off-chain, with the blockchain serving as a backstop in case of disputes or malfeasance.

Consider two players, Alice and Bob, who want to play a game of tic-tac-toe with stakes in Ethereum. The naive approach would be to interact directly with a smart contract for every move, which would be slow and costly. Instead, they can use a state channel for their game.

  1. Opening the Channel: They start by deploying a "Judge" smart contract on Ethereum, which holds the 1 ETH wager. The contract knows the rules of the game and the identities of the players.
  2. Playing the Game: Alice and Bob play the game off-chain by signing each move as transactions, which are exchanged directly between them but not broadcast to the blockchain. Each transaction includes a nonce to ensure moves are kept in order.
  3. Closing the Channel: When the game ends, the final state (i.e., the sequence of moves) is sent to the Judge contract, which pays out the wager to the winner after confirming both parties agree on the outcome.

A threat stronger than the execution

If Bob tries to cheat by submitting an old state where he was winning, Alice can challenge this during a dispute period by submitting a newer signed state. The Judge contract can verify the authenticity and order of these states due to the nonces, ensuring the integrity of the game. Thus, the mere threat of execution (submitting the state to the blockchain and having the fraud exposed) secures the off-chain interactions.

Game Theory in Practice

Understanding the application of game theory within blockchain and token ecosystems requires a structured approach to analyzing how stakeholders interact, defining possible actions they can take, and understanding the causal relationships within the system. This structured analysis helps in creating effective strategies that ensure the system operates as intended.

Stakeholder Analysis

Identifying Stakeholders

The first step in applying game theory effectively is identifying all relevant stakeholders within the ecosystem. This includes direct participants such as users, miners, and developers but also external entities like regulators, potential attackers, and partner organizations. Understanding who the stakeholders are and what their interests and capabilities are is crucial for predicting how they might interact within the system.

Stakeholders in blockchain development for systems engineering

Assessing Incentives and Capabilities

Each stakeholder has different motivations and resources at their disposal. For instance, miners are motivated by block rewards and transaction fees, while users seek fast, secure, and cheap transactions. Clearly defining these incentives helps in predicting how changes to the system’s rules and parameters might influence their behaviors.

Defining Action Space

Possible Actions

The action space encompasses all possible decisions or strategies stakeholders can employ in response to the ecosystem's dynamics. For example, a miner might choose to increase computational power, a user might decide to hold or sell tokens, and a developer might propose changes to the protocol.

Artonomus, Github

Constraints and Opportunities

Understanding the constraints (such as economic costs, technological limitations, and regulatory frameworks) and opportunities (such as new technological advancements or changes in market demand) within which these actions take place is vital. This helps in modeling potential strategies stakeholders might adopt.

Artonomus, Github

Causal Relationships Diagram

Mapping Interactions

Creating a diagram that represents the causal relationships between different actions and outcomes within the ecosystem can illuminate how complex interactions unfold. This diagram helps in identifying which variables influence others and how they do so, making it easier to predict the outcomes of certain actions.

Artonomus, Github

Analyzing Impact

By examining the causal relationships, developers and system designers can identify critical leverage points where small changes could have significant impacts. This analysis is crucial for enhancing system stability and ensuring its efficiency.

Feedback Loops

Understanding feedback loops within a blockchain ecosystem is critical as they can significantly amplify or mitigate the effects of changes within the system. These loops can reinforce or counteract trends, leading to rapid growth or decline.

Reinforcing Loops

Reinforcing loops are feedback mechanisms that amplify the effects of a trend or action. For example, increased adoption of a blockchain platform can lead to more developers creating applications on it, which in turn leads to further adoption. This positive feedback loop can drive rapid growth and success.

Death Spiral

Conversely, a death spiral is a type of reinforcing loop that leads to negative outcomes. An example might be the increasing cost of transaction fees leading to decreased usage of the blockchain, which reduces the incentive for miners to secure the network, further decreasing system performance and user adoption. Identifying potential death spirals early is crucial for maintaining the ecosystem's health.

The Death Spiral: How Terra's Algorithmic Stablecoin Came Crashing Down
the-death-spiral-how-terras-algorithmic-stablecoin-came-crashing-down/, Forbes

Conclusion

The fundamental advantage of token-based systems is being able to reward desired behavior. To capitalize on that possibility, token engineers put careful attention into optimization and designing incentives for long-term growth.

FAQ

  1. What does game theory contribute to blockchain token design?
    • Game theory optimizes blockchain ecosystems by structuring incentives that reward desired behavior.
  2. How do bonding curves apply game theory to improve token economics?
    • Bonding curves set token pricing that adjusts with supply changes, strategically incentivizing early purchases and penalizing speculation.
  3. What benefits do Layer 2 solutions provide in the context of game theory?
    • Layer 2 solutions leverage game theory, by creating systems where the threat of reporting fraudulent behavior ensures honest participation.