What is Dynamic NFT (dNFT)?

Maciej Zieliński

27 Sep 2022
What is Dynamic NFT (dNFT)?

Non-transferable tokens (NFTs) are becoming mainstream after widespread adoption in the Web3 community, attracting media attention from around the world and several prominent athletes and public figures launching their collectible items. As a result, NFTs have become one of blockchain technology's most publicly visible applications. The next step in the evolution of non-exchangeable tokens has just begun. Dynamic NFTs (dNFTs) expand the design space because they can adapt and change in response to external events and data. In this article, we will discuss dNFTs, how they can take NFTs to the next level, and current and potential dNFT use cases.

dNFT

NFT vs. dNFT

Static NFT transactions are non-exchangeable tokens and cannot be changed or modified. Once created, they exist on the blockchain as permanent, immutable records. These NFTs are often used to represent digital assets not intended to be changed or exchanged, such as works of art, collectibles, or digital identifiers. They can also be used to permanently store data in a blockchain, such as a decentralized database. Static NFTs have several advantages over dynamic ones. First, they are more secure because they cannot be changed once created. Second, they are more efficient and compatible with existing systems and protocols. As for shortcomings, however, they certainly exist as well. One is that static NFTs can't be updated or changed, so if you need to add new information, you're only left with creating a new NFT. This makes static NFTs less flexible than dynamic ones, as their very names indicate. Another disadvantage is that static NFTs are not compatible with some smart contract platforms. This limits the types of applications that can be built using static NFTs. But even with these limitations, static NFTs are still the most popular type of NFT and are used in many applications. Their security, performance, and compatibility make them a perfect fit for various applications.

dNFT

Benefits of static NFTs

Static NFTs have many advantages over dynamic NFTs.

First, they are more efficient in terms of storage and bandwidth requirements. This is because static NFTs only need to be saved once, no matter how many times they are exchanged or sold. In contrast, dynamic NFTs must be held every time the owner changes.

Second, static NFTs are more accessible to verify than dynamic NFTs. This is because all the information for the former is contained in a single file. In contrast, dynamic NFTs may have multiple related files, complicating verification.

Third, static NFTs are more resistant to fraud and forgery. Creating fake static NFTs is much more complex than forging dynamic NFTs.

Finally, static NFTs offer more flexibility in how they can be used. For example, they can be used as collateral for loans or as a form of digital property that can be shared.

Overall, static NFTs have many advantages over dynamic NFTs. They are much more efficient in terms of storage and bandwidth requirements. They are also easier to verify, more resistant to fraud and forgery, and offer more flexibility in their use.

Dynamic NFT (dNFT) transactions

Dynamic NFTs or dNFTs are tokens that can be updated or changed after they are created. They are, therefore, different from static NFT transactions, which cannot be modified. dNFTs are helpful in situations where the data associated with an NFT may need to be updated over time, such as digital assets representing real-world objects (e.g., artwork, cars, etc.) that may change ownership or location. Using dNFT, new asset holders can update their tokens to reflect the change in the user.

Benefits of dynamic NFT transactions

Dynamic NFTs have many advantages over traditional NFTs, including:

Increased Holder Engagement - Dynamic NFTs can help you share content or products. By offering something that is constantly changing or evolving, you can keep people coming back for more. This can take the form of new and exciting ways to do new challenges, collect rewards or interact with the content provided.

Greater immersion: Dynamic NFTs also have the potential to provide users with greater immersion. When people feel that they are constantly discovering new things, it can make the experience more enjoyable and memorable. This allows people to spend more time on your content and invest more in what you offer.

More loyalty - people are more likely to become loyal fans if they engage with your content and find new ways to enjoy it. 

More monetization opportunities: if you can successfully attract users with dynamic NFTs, additional monetization opportunities may arise. This could come from paying for premium content, rewards, or spending more time on the site or app.

Greater flexibility: Dynamic NFTs also provide more excellent content creation and distribution flexibility. You can gradually make it available with new challenges or rewards if you have an extensive library of content. This will help keep people interested and coming back for more and give you time to create new opportunities.

If your content is engaging and appealing to people, it is more likely to be shared by participants with their friends and family. This can increase the popularity and even organic growth of your business.

Better analytics: using dNFT can also provide better analytics and insights into how people interact with your content. This can help you optimize your offerings and make changes based on user feedback. It can also help you identify areas of potential monetization or new content ideas.

Increase exposure: Dynamic NFTs can also help increase the popularity of your company or brand. People consistently engaging with your content can lead to more whisper promotion and potential customers.

Increased fan engagement: You may see increased attention if you successfully attract followers through dynamic NFTs. This can include people sharing your content, giving feedback, and even becoming paying customers.

More opportunities for innovation - dNFTs also provide more opportunities for innovation and creativity. You can keep people interested and coming back for more by constantly changing and evolving. This can lead to new ideas and ways to improve your product.

There are many potential benefits to using dynamic NFTs, but remember that they may not apply in all situations. If you are considering using them, carefully weigh the pros and cons to ensure they suit your company or brand.

Potential use cases for dNFT

NFT metadata names tokens, assign attributes, and provide links to files. While tokenID provides a persistent identifier for a verifiable property, metadata is the essence of NFT - it contains the elements that make it worthwhile. Generative NFT designs often have a variety of features, some of which are rarer than others. These features are placed in the NFT metadata next to the IPFS link of the image or video corresponding to the NFT feature. In dNFT, these features change depending on external conditions. This feature is helpful for character development in blockchain-based games. When you first start playing with a playable NFT character, the basic statistics of the NFT are reflected in its metadata. The metadata changes as the player's level increase to reflect the character's development.

Use cases for dynamic NFT

Earlier in this article, we mentioned that in-game characters are a potential use case for dynamic NFTs. However, this is just an example. Therefore, we believe two additional use cases should be presented in this section to illustrate the benefits of dynamic NFTs.

Sports card dNFT

Sports card - we will use the card of a football player as an example. Let's assume we have a dynamic NFT representing a real soccer player. NFTs can store information such as speed, agility, power, goals, assists, etc., in the token's metadata. However, as the season progresses, these statistics change; for example, a player may score several goals. This means that dynamic NFTs can choose to retrieve data about a player's progress from outside the chain and update the metadata accordingly. This is not possible with static NFTs because the metadata will be persistent, from the moment someone creates a token.

Real estate and dNFTs 

The second example is real estate - in this case, we will use a house. Let's assume that we have a dynamic NFT representing this type of investment. When tokenizing tangible assets, it is advantageous to be able to change the metrics usually required.

In this example, we want the NFT metadata to reflect specific changes in the property that may be of interest to prospective buyers. For instance, they should show maintenance history, age, market value, past sales, etc. Therefore, when tokenizing physical assets such as real estate, it is advantageous to be able to update and change the token metadata.

Summary

As you can see, dNFTs are the answer to all the limitations of classic NFTs. Their liquidity and change over time make modern technologies quickly adapt to the real world. No wonder the above technology is developing faster and faster! 

Tagi

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Monte Carlo Simulations in Tokenomics

Kajetan Olas

01 May 2024
Monte Carlo Simulations in Tokenomics

As the web3 field grows in complexity, traditional analytical tools often fall short in capturing the dynamics of digital markets. This is where Monte Carlo simulations come into play, offering a mathematical technique to model systems fraught with uncertainty.

Monte Carlo simulations employ random sampling to understand probable outcomes in processes that are too complex for straightforward analytic solutions. By simulating thousands, or even millions, of scenarios, Monte Carlo methods can provide insights into the likelihood of different outcomes, helping stakeholders make informed decisions under conditions of uncertainty.

In this article, we will explore the role of Monte Carlo simulations within the context of tokenomics.  illustrating how they are employed to forecast market dynamics, assess risk, and optimize strategies in the volatile realm of cryptocurrencies. By integrating this powerful tool, businesses and investors can enhance their analytical capabilities, paving the way for more resilient and adaptable economic models in the digital age.

Understanding Monte Carlo Simulations

The Monte Carlo method is an approach to solving problems that involve random sampling to understand probable outcomes. This technique was first developed in the 1940s by scientists working on the atomic bomb during the Manhattan Project. The method was designed to simplify the complex simulations of neutron diffusion, but it has since evolved to address a broad spectrum of problems across various fields including finance, engineering, and research.

Random Sampling and Statistical Experimentation

At the heart of Monte Carlo simulations is the concept of random sampling from a probability distribution to compute results. This method does not seek a singular precise answer but rather a probability distribution of possible outcomes. By performing a large number of trials with random variables, these simulations mimic the real-life fluctuations and uncertainties inherent in complex systems.

Role of Randomness and Probability Distributions in Simulations

Monte Carlo simulations leverage the power of probability distributions to model potential scenarios in processes where exact outcomes cannot be determined due to uncertainty. Each simulation iteration uses randomly generated values that follow a specific statistical distribution to model different outcomes. This method allows analysts to quantify and visualize the probability of different scenarios occurring.

The strength of Monte Carlo simulations lies in the insight they offer into potential risks. They allow modelers to see into the probabilistic "what-if" scenarios that more closely mimic real-world conditions.

Monte Carlo Simulations in Tokenomics

Monte Carlo simulations are instrumental tool for token engineers. They're so useful due to their ability to model emergent behaviors. Here are some key areas where these simulations are applied:

Pricing and Valuation of Tokens

Determining the value of a new token can be challenging due to the volatile nature of cryptocurrency markets. Monte Carlo simulations help by modeling various market scenarios and price fluctuations over time, allowing analysts to estimate a token's potential future value under different conditions.

Assessing Market Dynamics and Investor Behavior

Cryptocurrency markets are influenced by a myriad of factors including regulatory changes, technological advancements, and shifts in investor sentiment. Monte Carlo methods allow researchers to simulate these variables in an integrated environment to see how they might impact token economics, from overall market cap fluctuations to liquidity concerns.

Assesing Possible Risks

By running a large number of simulations it’s possible to stress-test the project in multiple scenarios and identify emergent risks. This is perhaps the most important function of Monte Carlo Process, since these risks can’t be assessed any other way.

Source: How to use Monte Carlo simulation for reliability analysis?

Benefits of Using Monte Carlo Simulations

By generating a range of possible outcomes and their probabilities, Monte Carlo simulations help decision-makers in the cryptocurrency space anticipate potential futures and make informed strategic choices. This capability is invaluable for planning token launches, managing supply mechanisms, and designing marketing strategies to optimize market penetration.

Using Monte Carlo simulations, stakeholders in the tokenomics field can not only understand and mitigate risks but also explore the potential impact of different strategic decisions. This predictive power supports more robust economic models and can lead to more stable and successful token launches. 

Implementing Monte Carlo Simulations

Several tools and software packages can facilitate the implementation of Monte Carlo simulations in tokenomics. One of the most notable is cadCAD, a Python library that provides a flexible and powerful environment for simulating complex systems. 

Overview of cadCAD configuration Components

To better understand how Monte Carlo simulations work in practice, let’s take a look at the cadCAD code snippet:

sim_config = {

    'T': range(200),  # number of timesteps

    'N': 3,           # number of Monte Carlo runs

    'M': params       # model parameters

}

Explanation of Simulation Configuration Components

T: Number of Time Steps

  • Definition: The 'T' parameter in CadCAD configurations specifies the number of time steps the simulation should execute. Each time step represents one iteration of the model, during which the system is updated. That update is based on various rules defined by token engineers in other parts of the code. For example: we might assume that one iteration = one day, and define data-based functions that predict token demand on that day.

N: Number of Monte Carlo Runs

  • Definition: The 'N' parameter sets the number of Monte Carlo runs. Each run represents a complete execution of the simulation from start to finish, using potentially different random seeds for each run. This is essential for capturing variability and understanding the distribution of possible outcomes. For example, we can acknowledge that token’s price will be correlated with the broad cryptocurrency market, which acts somewhat unpredictably.

M: Model Parameters

  • Definition: The 'M' key contains the model parameters, which are variables that influence system's behavior but do not change dynamically with each time step. These parameters can be constants or distributions that are used within the policy and update functions to model the external and internal factors affecting the system.

Importance of These Components

Together, these components define the skeleton of your Monte Carlo simulation in CadCAD. The combination of multiple time steps and Monte Carlo runs allows for a comprehensive exploration of the stochastic nature of the modeled system. By varying the number of timesteps (T) and runs (N), you can adjust the depth and breadth of the exploration, respectively. The parameters (M) provide the necessary context and ensure that each simulation is realistic.

Messy graph representing Monte Carlo simulation, source: Bitcoin Monte Carlo Simulation

Conclusion

Monte Carlo simulations represent a powerful analytical tool in the arsenal of token engineers. By leveraging the principles of statistics, these simulations provide deep insights into the complex dynamics of token-based systems. This method allows for a nuanced understanding of potential future scenarios and helps with making informed decisions.

We encourage all stakeholders in the blockchain and cryptocurrency space to consider implementing Monte Carlo simulations. The insights gained from such analytical techniques can lead to more effective and resilient economic models, paving the way for the sustainable growth and success of digital currencies.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.

FAQ

What is a Monte Carlo simulation in tokenomics context?

  • It's a mathematical method that uses random sampling to predict uncertain outcomes.

What are the benefits of using Monte Carlo simulations in tokenomics?

  • These simulations help foresee potential market scenarios, aiding in strategic planning and risk management for token launches.

Why are Monte Carlo simulations unique in cryptocurrency analysis?

  • They provide probabilistic outcomes rather than fixed predictions, effectively simulating real-world market variability and risk.

Behavioral Economics in Token Design

Kajetan Olas

22 Apr 2024
Behavioral Economics in Token Design

Behavioral economics is a field that explores the effects of psychological factors on economic decision-making. This branch of study is especially pertinent while designing a token since user perception can significantly impact a token's adoption.

We will delve into how token design choices, such as staking yields, token inflation, and lock-up periods, influence consumer behavior. Research studies reveal that the most significant factor for a token's attractiveness isn’t its functionality, but its past price performance. This underscores the impact of speculative factors. Tokens that have shown previous price increases are preferred over those with more beneficial economic features.

Understanding Behavioral Tokenomics

Understanding User Motivations

The design of a cryptocurrency token can significantly influence user behavior by leveraging common cognitive biases and decision-making processes. For instance, the concept of "scarcity" can create a perceived value increase, prompting users to buy or hold a token in anticipation of future gains. Similarly, "loss aversion," a foundational principle of behavioral economics, suggests that the pain of losing is psychologically more impactful than the pleasure of an equivalent gain. In token design, mechanisms that minimize perceived losses (e.g. anti-dumping measures) can encourage long-term holding.

Incentives and Rewards

Behavioral economics also provides insight into how incentives can be structured to maximize user participation. Cryptocurrencies often use tokens as a form of reward for various behaviors, including mining, staking, or participating in governance through voting. The way these rewards are framed and distributed can greatly affect their effectiveness. For example, offering tokens as rewards for achieving certain milestones can tap into the 'endowment effect,' where people ascribe more value to things simply because they own them.

Social Proof and Network Effects

Social proof, where individuals copy the behavior of others, plays a crucial role in the adoption of tokens. Tokens that are seen being used and promoted by influential figures within the community can quickly gain traction, as new users emulate successful investors. The network effect further amplifies this, where the value of a token increases as more people start using it. This can be seen in the rapid growth of tokens like Ethereum, where the broad adoption of its smart contract functionality created a snowball effect, attracting even more developers and users.

Token Utility and Behavioral Levers

The utility of a token—what it can be used for—is also crucial. Tokens designed to offer real-world applications beyond mere financial speculation can provide more stable value retention. Integrating behavioral economics into utility design involves creating tokens that not only serve practical purposes but also resonate on an emotional level with users, encouraging engagement and investment. For example, tokens that offer governance rights might appeal to users' desire for control and influence within a platform, encouraging them to hold rather than sell.

Understanding Behavioral Tokenomics

Intersection of Behavioral Economics and Tokenomics

Behavioral economics examines how psychological influences, various biases, and the way in which information is framed affect individual decisions. In tokenomics, these factors can significantly impact the success or failure of a cryptocurrency by influencing user behavior towards investment

Influence of Psychological Factors on Token Attraction

A recent study observed that the attractiveness of a token often hinges more on its historical price performance than on intrinsic benefits like yield returns or innovative economic models. This emphasizes the fact that the cryptocurrency sector is still young, and therefore subject to speculative behaviors

The Effect of Presentation and Context

Another interesting finding from the study is the impact of how tokens are presented. In scenarios where tokens are evaluated separately, the influence of their economic attributes on consumer decisions is minimal. However, when tokens are assessed side by side, these attributes become significantly more persuasive. This highlights the importance of context in economic decision-making—a core principle of behavioral economics. It’s easy to translate this into real-life example - just think about the concept of staking yields. When told that the yield on e.g. Cardano is 5% you might not think much of it. But, if you were simultaneously told that Anchor’s yield is 19%, then that 5% seems like a tragic deal.

Implications for Token Designers

The application of behavioral economics to the design of cryptocurrency tokens involves leveraging human psychology to encourage desired behaviors. Here are several core principles of behavioral economics and how they can be effectively utilized in token design:

Leveraging Price Performance

Studies show clearly: “price going up” tends to attract users more than most other token attributes. This finding implies that token designers need to focus on strategies that can showcase their economic effects in the form of price increases. This means that e.g. it would be more beneficial to conduct a buy-back program than to conduct an airdrop.

Scarcity and Perceived Value

Scarcity triggers a sense of urgency and increases perceived value. Cryptocurrency tokens can be designed to have a limited supply, mimicking the scarcity of resources like gold. This not only boosts the perceived rarity and value of the tokens but also drives demand due to the "fear of missing out" (FOMO). By setting a cap on the total number of tokens, developers can create a natural scarcity that may encourage early adoption and long-term holding.

Initial Supply Considerations

The initial supply represents the number of tokens that are available in circulation immediately following the token's launch. The chosen number can influence early market perceptions. For instance, a large initial supply might suggest a lower value per token, which could attract speculators. Data shows that tokens with low nominal value are highly volatile and generally underperform. Understanding how the initial supply can influence investor behavior is important for ensuring the token's stability.

Managing Maximum Supply and Inflation

A finite maximum supply can safeguard the token against inflation, potentially enhancing its value by ensuring scarcity. On the other hand, the inflation rate, which defines the pace at which new tokens are introduced, influences the token's value and user trust.

Investors in cryptocurrency markets show a notable aversion to deflationary tokenomics. Participants are less likely to invest in tokens with a deflationary framework, viewing them as riskier and potentially less profitable. Research suggests that while moderate inflation can be perceived neutrally or even positively, high inflation does not enhance attractiveness, and deflation is distinctly unfavorable.

Source: Behavioral Tokenomics: Consumer Perceptions of Cryptocurrency Token Design

These findings suggest that token designers should avoid high deflation rates, which could deter investment and user engagement. Instead, a balanced approach to inflation, avoiding extremes, appears to be preferred among cryptocurrency investors.

Loss Aversion

People tend to prefer avoiding losses to acquiring equivalent gains; this is known as loss aversion. In token design, this can be leveraged by introducing mechanisms that protect against losses, such as staking rewards that offer consistent returns or features that minimize price volatility. Additionally, creating tokens that users can "earn" through participation or contribution to the network can tap into this principle by making users feel they are safeguarding an investment or adding protective layers to their holdings.

Social Proof

Social proof is a powerful motivator in user adoption and engagement. When potential users see others adopting a token, especially influential figures or peers, they are more likely to perceive it as valuable and trustworthy. Integrating social proof into token marketing strategies, such as showcasing high-profile endorsements or community support, can significantly enhance user acquisition and retention.

Mental Accounting

Mental accounting involves how people categorize and treat money differently depending on its source or intended use. Tokens can be designed to encourage specific spending behaviors by being categorized for certain types of transactions—like tokens that are specifically for governance, others for staking, and others still for transaction fees. By distinguishing tokens in this way, users can more easily rationalize holding or spending them based on their designated purposes.

Endowment Effect

The endowment effect occurs when people value something more highly simply because they own it. For tokenomics, creating opportunities for users to feel ownership can increase attachment and perceived value. This can be done through mechanisms that reward users with tokens for participation or contribution, thus making them more reluctant to part with their holdings because they value them more highly.

Conclusion

By considering how behavioral factors influence market perception, token engineers can create much more effective ecosystems. Ensuring high demand for the token, means ensuring proper funding for the project in general.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.

FAQ

How does the initial supply of a token influence its market perception?

  • The initial supply sets the perceived value of a token; a larger supply might suggest a lower per-token value.

Why is the maximum supply important in token design?

  • A finite maximum supply signals scarcity, helping protect against inflation and enhance long-term value.

How do investors perceive inflation and deflation in cryptocurrencies?

  • Investors generally dislike deflationary tokens and view them as risky. Moderate inflation is seen neutrally or positively, while high inflation is not favored.