The Ultimate Guide to Zero-Knowledge Proofs: zk-SNARKs vs zk-STARKs

Paulina Lewandowska

14 Apr 2023
The Ultimate Guide to Zero-Knowledge Proofs: zk-SNARKs vs zk-STARKs

Introduction

As blockchain and cryptocurrency have risen in popularity, zero-knowledge proofs have become increasingly important in cryptography. These types of proofs allow for one party to prove they know certain information without actually revealing the information, making them useful for confidential transactions. In this blog post, we will compare the differences between the two most commonly used kinds of zero-knowledge proofs: zk-SNARKs vs zk-STARKs.

What are Zero Knowledge Proofs?

In cryptography, zero-knowledge proofs are a type of protocol that enables one party to prove to another party that a statement is true without revealing any additional information beyond the statement's truthfulness. In other words, zero-knowledge proofs allow one party to demonstrate knowledge of a particular fact without disclosing any other information that could be used to derive the same knowledge. This makes them useful for applications that require secure and private transactions, such as in blockchain and cryptocurrency, where they can be used to verify transactions without revealing any sensitive information. Zero-knowledge proofs are becoming increasingly important in cryptography due to their potential applications in privacy-preserving systems and secure transactions.

In the Mina Protocol video below, you will learn more details:

https://www.youtube.com/watch?v=GvwYJDzzI-g&pp=ygUVWmVyby1Lbm93bGVkZ2UgUHJvb2Zz

Zk-SNARKs vs zk-STARKs: what’s the difference?

In the realm of zero-knowledge proofs, there are two types: k-SNARKs and zk-STARKs. The distinguishing factor between the two lies in their approach to generating proofs. While zk-SNARKs utilize a trusted setup in which a group of trusted individuals generate a set of public parameters to generate proofs that can be reused indefinitely, zk-STARKs employ a more computationally intensive method that negates the need for a trusted setup.

Zk-SNARKs vs zk-STARKs

When comparing Zk-SNARKs and zk-STARKs, one key difference is their level of transparency. Zk-SNARKs are considered less transparent than zk-STARKs due to their reliance on a secret key that is only known to trusted setup participants, which could compromise the system's security if leaked or compromised. However, zk-STARKs are completely transparent and don't rely on assumptions or secret keys, making them more appealing to those who prioritize both transparency and security.

In terms of proof generation time and size, Zk-SNARKs are generally less efficient than zk-STARKs. However, zk-STARKs have the advantage of scalability and can handle more complex computations. Additionally, zk-STARKs are post-quantum secure, while Zk-SNARKs are not, making them resistant to attacks from quantum computers. Another important consideration is that zk-STARKs are more scalable and can handle larger computations compared to zk-SNARKs.

Zk-SNARKs explained

Zk-SNARKs have become increasingly popular due to their efficiency and privacy-preserving features, making them applicable in various real-life scenarios such as in blockchain, where they can be deployed to prove ownership of digital assets without revealing sensitive information. Additionally, Zk-SNARKs have played a crucial role in voting systems by ensuring the accurate counting of votes while maintaining voter anonymity. One of the most notable applications of Zk-SNARKs can be observed in Zcash, a private cryptocurrency, which allows users to transact anonymously while concealing transaction data. However, concerns about potential security risks have been raised regarding the use of trusted setups in Zk-SNARKs, as a compromised trusted setup can put the entire system's privacy at risk.

Zk-STARKs explained

Rather than requiring a trusted setup like zk-SNARKs do, zk-STARKs were developed as a better alternative, which is more resistant to attacks. This is because the trusted setup of zk-SNARKs is vulnerable to malicious use should it be compromised. Despite this, zk-STARKs require more calculations to generate a proof, making them less efficient overall. Still, recent developments have paved the way for more efficient zk-STARKs, making it a promising replacement to zk-SNARKs.

According to their use cases, zk-SNARKs and zk-STARKs differ not only in efficiency and trusted setups. Applications that require fast and efficient proof verification, such as privacy-preserving transactions in cryptocurrencies, typically use zk-SNARKs. In contrast, zk-STARKs are more appropriate for applications that require transparency and no trusted setup, such as voting systems and decentralized autonomous organizations (DAOs). Additionally, it's worth noting that although zk-SNARKs and zk-STARKs are the most prominent types of zero-knowledge proofs, there are other variants such as Bulletproofs and Aurora that offer different trade-offs in efficiency and security, depending on the specific use case.

How to implement zk proof in the project?

When implementing zero-knowledge proof in a project, there are various technical steps involved, and depending on the type of zero-knowledge proof used, different methods and tools are available, such as zk-SNARKs vs zk-STARKs. For instance, when using zk-SNARKs, developers must utilize a trusted setup to produce the public parameters that will be used to generate and authenticate the proofs. The process requires the selection of the appropriate trusted setup ceremony, the setup of necessary infrastructure and assigning the participants who will generate the parameters. After the trusted setup, developers must include the appropriate libraries such as libsnark in their code and develop the functions required to generate and authenticate the proofs.

When it comes to zk-STARKs, a different approach is necessary for developers since trusted setup isn't required. To prove the computations, they need to utilize tools like circom and snarkjs to generate the circuits and tools such as groth16 and marlin to verify and generate the proofs. This includes choosing the appropriate tools and libraries, creating circuits, and ensuring full implementation of verification functions and proof generation.

A deep understanding of the cryptographic protocols involved, as well as having access to the necessary tools and libraries, are crucial requirements for developers when implementing zero-knowledge proof in a project. Additionally, developers must ensure that the proofs generated by the system are correct, secure, and efficient without compromising the users' privacy or security. Testing and debugging play a critical role during the process, and developers must ensure the system undergoes thorough testing before deploying it to production.

Conclusion

Zero-knowledge proofs have become increasingly crucial in cryptography, particularly in blockchain and cryptocurrency. The most commonly used types of zero-knowledge proofs are zk-SNARKs and zk-STARKs, which vary in their approach to generating proofs, level of transparency, proof generation time and size, scalability, and post-quantum security. To implement zero-knowledge proof in a project, developers must possess a thorough understanding of the cryptographic protocols employed, access to the necessary tools and libraries, and ensure the system undergoes comprehensive testing before deployment. Different technical steps and methods are required depending on the zero-knowledge proof used. As the use of zero-knowledge proofs continues to expand, comprehending the trade-offs between different types and effectively implementing them in various applications while safeguarding privacy and security is of utmost importance.

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Nextrope as Sponsor at ETH Warsaw 2024: Highlights

Miłosz

04 Oct 2024
Nextrope as Sponsor at ETH Warsaw 2024: Highlights

ETH Warsaw has established itself as a significant event in the Web3 space, gathering developers, entrepreneurs, and investors in the heart of Poland’s capital each year. The 2024 edition was filled with builders and leaders united in advancing decentralized technologies.

Leading Event of Warsaw Blockchain Week

As a blend of conference and hackathon, ETH Warsaw aims to push the boundaries of innovation. For companies and individuals eager to shape the future of tech, the premier summit during Warsaw Blockchain Week offers a unique platform to connect and collaborate.

Major Milestones in Previous Editions

  • Over 1,000 participants attended the forum
  • 222 hackers competed, showcasing groundbreaking technical skills
  • $119,920 in bounties was awarded to boost promising solution development

Key Themes at ETH Warsaw 2024

This year’s discussions were centered around shaping the adoption of blockchain. To emphasize that future implementation requires a wide range of voices, perspectives, and understanding, ETH Warsaw 2024 encouraged participation from individuals of all backgrounds. As the industry stands on the cusp of a potential bull market, building resilient products brings substantial impact. Participants mutually raised an inhibitor posed by poor architecture or suspicious practices.

Infrastructure and Scalability

  • Layer 2 (L2) solutions
  • Zero-Knowledge Proofs (ZKPs)
  • Future of Account Abstraction in Decentralized Applications (DApps)
  • Advancements in Blockchain Interoperability
  • Integration of Artificial Intelligence (AI) and Machine Learning Models (MLMs) with on-chain data

Responsibility

With the premise of robust blockchain systems, we delved into topics such as privacy, advanced security protocols, and white-hacking as essential tools for maintaining trust. Discussions also included consensus mechanisms and their role in the entire infrastructure, beginning with transparent Decentralized Autonomous Organizations (DAOs).

Legal Policies

The track on financial freedom led to the transformative potential of decentralized finance (DeFi). We tackled the challenges and opportunities of blockchain products within a rapidly evolving regulatory landscape.

Mass Adoption

Conversations surrounding accessible platforms underscored the need to simplify onboarding for new users, ultimately crafting solutions that appeal to mainstream audiences. Contributors explored ways to improve user experience (UX), enhance community management, and support Web3 startups.

ETH Legal, co-organized with PKO BP and several leading law firms, studied the implementation of the MiCA guidelines starting next year and affecting the market. It aimed to dissect the complex policies that govern digital assets.

Currently, founders navigate a patchwork of regulations that vary by jurisdiction. There is a clear need for structured protocols that ensure consumer protection and market integrity while attracting more users. Legal experts broke down the implications of existing and anticipated changes on decentralized finance (DeFi), non-fungible tokens (NFTs), business logic, and other emerging technologies.

The importance of ETH Legal extended beyond theoretical discussions. It served as a vital forum for stakeholders to connect and share insights. Thanks to input from renowned experts in the field, attendees left with a deeper understanding of the challenges ahead.

Warsaw Blockchain Week: Nextrope’s Engagement

The Warsaw Blockchain Week 2024 ensured a wide range of activities, with a packed schedule of conferences, hackathons, and networking opportunities. Nextrope actively engaged in several side events throughout the week and recognized the immense potential to foster connections.

Side Events Attended by Nextrope

  • Elympics on TON
  • Aleph Zero Opening Party
  • Cookie3 x NOKS x TON Syndicate
  • Solana House

Nextrope’s Contribution to ETH Warsaw 2024

At ETH Warsaw 2024, Nextrope proudly positioned itself as a Pond Sponsor of the conference and hackathon, reflecting the event's mission. Following a strong track record of partnerships with large financial institutions and startups, we seized the opportunity to share our reflections with the community.

Together, we continue to innovate toward a more decentralized and inclusive future. By actively participating in open conversations about regulatory and technological advancements, Nextrope solidifies its role as an exemplar of dedication, forward-thinking, and technological resources.

Nextrope on Economic Forum 2024: Insights from the Event

Kajetan Olas

14 Sep 2024
Nextrope on Economic Forum 2024: Insights from the Event

The 33rd Economic Forum 2024, held in Karpacz, Poland, gathered leaders from across the globe to discuss the pressing economic and technological challenges. This year, the forum had a special focus on Artificial Intelligence (AI and Cybersecurity, bringing together leading experts and policymakers.

Nextrope was proud to participate in the Forum where we showcased our expertise and networked with leading minds in the AI and blockchain fields.

Economic Forum 2024: A Hub for Innovation and Collaboration

The Economic Forum in Karpacz is an annual event often referred to as the "Polish Davos," attracting over 6,000 participants, including heads of state, business leaders, academics, and experts. This year’s edition was held from September 3rd to 5th, 2024.

Key Highlights of the AI Forum and Cybersecurity Forum

The AI Forum and the VI Cybersecurity Forum were integral parts of the event, organized in collaboration with the Ministry of Digital Affairs and leading Polish universities, including:

  • Cracow University of Technology
  • University of Warsaw
  • Wrocław University of Technology
  • AGH University of Science and Technology
  • Poznań University of Technology

Objectives of the AI Forum

  • Promoting Education and Innovation: The forum aimed to foster education and spread knowledge about AI and solutions to enhance digital transformation in Poland and CEE..
  • Strengthening Digital Administration: The event supported the Ministry of Digital Affairs' mission to build and strengthen the digital administration of the Polish State, encouraging interdisciplinary dialogue on decentralized architecture.
  • High-Level Meetings: The forum featured closed meetings of digital ministers from across Europe, including a confirmed appearance by Volker Wissing, the German Minister for Digital Affairs.

Nextrope's Active Participation in the AI Forum

Nextrope's presence at the AI Forum was marked by our active engagement in various activities in the Cracow University of Technology and University of Warsaw zone. One of the discussion panels we enjoyed the most was "AI in education - threats and opportunities".

Our Key Activities

Networking with Leading AI and Cryptography Researchers.

Nextrope presented its contributions in the field of behavioral profilling in DeFi and established relationships with Cryptography Researchers from Cracow University of Technology and the brightest minds on Polish AI scene, coming from institutions such as Wroclaw University of Technology, but also from startups.

Panel Discussions and Workshops

Our team participated in several panel discussions, covering a variety of topics. Here are some of them

  • Polish Startup Scene.
  • State in the Blockchain Network
  • Artificial Intelligence - Threat or Opportunity for Healthcare?
  • Silicon Valley in Poland – Is it Possible?
  • Quantum Computing - How Is It Changing Our Lives?

Broadening Horizons

Besides tuning in to topics that strictly overlap with our professional expertise we decided to broaden our horizons and participated in panels about national security and cross-border cooperation.

Meeting with clients:

We had a pleasure to deepen relationships with our institutional clients and discuss plans for the future.

Networking with Experts in AI and Blockchain

A major highlight of the Economic Forum in Karpacz was the opportunity to network with experts from academia, industry, and government.

Collaborations with Academia:

We engaged with scholars from leading universities such as the Cracow University of Technology and the University of Warsaw. These interactions laid the groundwork for potential research collaborations and joint projects.

Building Strategic Partnerships:

Our team connected with industry leaders, exploring opportunities for partnerships in regard to building the future of education. We met many extremely smart, yet humble people interested in joining advisory board of one of our projects - HackZ.

Exchanging Knowledge with VCs and Policymakers:

We had fruitful discussions with policymakers and very knowledgable representatives of Venture Capital. The discussions revolved around blockchain and AI regulation, futuristic education methods and dillemas regarding digital transformation in companies. These exchanges provided us with very interesting insights as well as new friendships.

Looking Ahead: Nextrope's Future in AI and Blockchain

Nextrope's participation in the Economic Forum Karpacz 2024 has solidified our position as one of the leading, deep-tech software houses in CEE. By fostering connections with academia, industry experts, and policymakers, we are well-positioned to consult our clients on trends and regulatory needs as well as implementing cutting edge DeFi software.

What's Next for Nextrope?

Continuing Innovation:

We remain committed to developing cutting-edge software solutions and designing token economies that leverage the power of incentives and advanced cryptography.

Deepening Academic Collaborations:

The partnerships formed at the forum will help us stay at the forefront of technological advancements, particularly in AI and blockchain.

Expanding Our Global Reach:

The international connections made at the forum enable us to expand our influence both in CEE and outside of Europe. This reinforces Nextrope's status as a global leader in technology innovation.

If you're looking to create a robust blockchain system and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.