Ethereum 2.0 – What does the release mean for your application?

Maciej Zieliński

18 Jan 2021
Ethereum 2.0 – What does the release mean for your application?

Ethereum 2.0, also known as Serenity is a long-awaited update to the Ethereum network, significantly improving the security and scalability of arguably the world's most popular Blockchain protocol. Above all, it will reduce power consumption and enable the network to process more transactions. The most important improvements from the technical side are to be the transformation of Ethereum into a proof-of-stake blockchain and the introduction of fragmented chains.  

Note, however, that this is a change to the Ethereum infrastructure only. Dapp users or developers and ETH holders can rest assured. Ethereum 2.0 will be fully compatible with the Ethereum 1.0 network they use today. On the other hand, they will also be able to use the ETH they own after the update. 

So why are these changes so important? On the Nextrope blog, we will try to cover everything you should know about Ethereum 2.0. 


Current restrictions

Released in 2015, Ethereum has quickly become the most widely used blockchain protocol (learn what blockchain protocols are and what distinguishes them from each other here). The open public system has enabled previously unseen software applications and generated billions of dollars in value. However, to realize its full potential, Ethereum still has to deal with a few limitations. 

Speed and efficiency:

Currently, Ethereum is capable of handling around 15 transactions per second. Compared to Visa or Mastercard, which are able to process up to 1,500 of them at the same time, it therefore comes off rather poorly. In addition, the process of "mining" ETH, on which verification of these transactions is based, consumes too much energy, which limits the scalability of the entire network. 

What does ETH 'mining' consist of?

Mining is the process of creating a block of transactions to be added to the Ethereum blockchain (hence blockchain). Each block contains transaction information and data such as the Hash - the unique code of the block and the hash of the previous block to which the block hash is compatible. 

Essentially, the miners' role is to process pending transactions in exchange for rewards in the form of ETH, Ethereum's native currency (2 ETH for each block generated, respectively). Generating a block requires the use of a lot of computing power, due to the difficulty level set by the Ethereum protocol. The difficulty level is proportional to the total amount of computing power used to mine Ethereum and serves as a way to protect the network from attacks, as well as to tune the rate at which subsequent blocks are created. This system of using computing power to secure and verify data is known as Proof of Work (PoW).

To maintain the security of the current Ethereum network, therefore, the high energy intensity of the mining process is necessary - making the cost of attacking the network, making any change to any of the already existing blocks, extremely high.

The problem of retaining decentralisation when scaling up 

There are, of course, Blockchain protocols such as Hyperledger Fabric or Quorumthat allow for more transactions per second. However, the higher performance in their case comes from being more centralised than Ethereum. By design, Ethereum is intended to remain a fully decentralised network, so such a solution in this case is not an option. It seems Ethereum 2.0 developers have found a way to improve performance and enable scaling without sacrificing decentralisation. 

What's new in Ethereum 2.0?

Fragmented chains (or chains of fragments) 

At the moment, all nodes in the Ethereum network have to download, read, analyse and store every previous transaction before they process a new one. Not surprisingly, Ethereum is currently unable to process more than the aforementioned 15 transactions per second. 

Ethereum 2.0 introduces fragmented chains, which are parallel blockchains that take over a fair share of the network's processing work. They allow nodes to be dispersed into subsets corresponding to fragments of the network. This ensures that each node does not have to process and store transactions from the entire network, but only those in its subset. 

Proof-of-stake in Ethereum 2.0

In Ethereum 2.0, Proof-of-Work is to be replaced by Proof-of-stake. Network security will be achieved through financial commitments rather than computing power - energy consumption. Proof-of-stake is a consensus process where ETH becomes the validator for Ethereum. The validator runs software that confirms the transaction and adds new blocks to the chain. To become a full validator, 32 ETH will be needed. However, there will be an opportunity to join a pool of smaller validators and thus offer a smaller stake. When processing transactions, validators will take care to maintain consensus over the data and thus the security of the entire network.

Proof-of-stake will drastically reduce the energy intensity of the entire network, which is a key step towards further scaling Ethereum and increasing its environmental friendliness. 

Beacon chain 

A decisive role in introducing proof of stake into Ethereum is played by the Beacon Chain, which, in simple terms, can be described as the layer that coordinates the operation of the entire system. However, unlike the core network (meinnet) present in Ethereum, it does not support accounts or smart contracts. Instead, its main task is to implement proof-of-stake protocol management for all fragmented chains (shards). It was the connection of the Beacon Chain to Ethereum that was the first step towards version 2.0 ( phase 0).

Ethereum 2.0, what will 2021 bring?

The introduction of Ethereum 2.0 developers will divide into 3 stages - phases: Phase 0, 1 and 2. In December 2020, the first one, which started in 2018, was completed. As we mentioned its main goal was to launch the Beacon chain. The success of Phase 0 will allow the start of Phase 1 in 2021 - the shard chain deployment, which will start the full-fledged transition to the Proof-of-stake protocol. The full upgrade to Ethereum 2.0 will be enabled by Phase 2 scheduled for late 2021/early 2022, this is when shard chains should start supporting all contracts and transactions. 

How might the next phases of Ethereum 2.0 implications affect ETH prices? This is a question we will certainly return to in the blog. 


Most viewed

Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

What is Account Abstraction?


10 Nov 2023
What is Account Abstraction?

Account abstraction is a new way of thinking about how users interact with blockchains. Instead of using traditional externally owned accounts (EOAs), account abstraction allows users to create and manage their accounts using smart contracts. This has a number of potential benefits, including improved security, enhanced privacy, and increased flexibility.

What is account abstraction?

Account abstraction is a concept that, at its core, aims to simplify the user's interaction with blockchain networks. It is a transformative approach that seeks to mask the technicalities of blockchain operations from end-users. It is making transactions as straightforward as sending an email. Account Abstr. allows users to interact with the blockchain without worrying about the underlying technical details.

How does account abstraction differ from the traditional model?

In the traditional account model, each user has an EOA. EOAs are controlled by private keys, which must be kept secret in order to protect the user's funds. Acc. abstraction allows users to create and manage their accounts using smart contracts.

Historical Context

The journey towards acc. abstraction began with the first generation of blockchain technologies, characterized by their "one-size-fits-all" approach to account management. Bitcoin, for instance, introduced the concept of accounts and transactions in a form that was accessible to tech-savvy individuals but remained perplexing to the layperson. Ethereum expanded on this by introducing smart contracts, which opened the door to programmable transactions but did not alter the fundamental account structure. The idea of acc. abstraction has been discussed in the Ethereum community for several years as a part of various Ethereum Improvement Proposals (EIPs), particularly as a feature to be potentially implemented in Ethereum 2.0. It is a direct response to the need for a more versatile and user-centric design that can cater to a broader audience and spur the widespread adoption of blockchain technology.

The Technicalities of Account Abstraction

Account abstraction is not merely a theoretical construct but a technical innovation with specific mechanisms underpinning its operation. In essence, it alters the way transactions are initiated and executed within a blockchain network.

How Account Abstraction Works

Under traditional blockchain models, initiating a transaction involves an externally owned account (EOA) signing a transaction with a private key. This transaction is then broadcast to the network for validation and inclusion in the blockchain. Account abstraction, however, replaces this process with a more flexible one. Here, every account is a smart contract, and transactions are messages sent through these contracts. These smart contracts can encode complex rules for transaction validation, beyond what EOAs can do, such as multi-signature requirements or conditional transactions based on certain triggers.

The technical crux of account abstraction lies in the smart contract’s ability to define its own conditions for transaction execution. This means that user accounts can have unique security protocols or automated operations without the user needing to understand the underlying smart contract code.

Hey! Are you interested in the latest technologies in the blockchain area? be sure to read the article 'Top Zero-Knowledge Proof Projects to watch in 2023'

The Benefits of Account Abstraction

The implications of account abstraction are profound, offering a range of benefits that can enhance the blockchain experience for users and developers alike.

Improved User Experience

One of the most significant advantages of account abstraction is the improvement it brings to user experience. By abstracting away the complexities of key management and transaction rules, it presents a more intuitive interface for users.

Enhanced Security Features

Account abstraction also allows for the implementation of advanced security measures. Since each account can define its own logic, users can tailor their security settings to their specific needs. For instance, one might set up an account that requires additional verification for transactions exceeding a certain value or restricts withdrawals to certain addresses.

Future Implications

The future implications of account abstraction are vast. As the technology matures, it could become a standard feature of blockchain networks, potentially making the current distinction between user accounts and smart contracts obsolete. This could lead to a new wave of blockchain applications that are both powerful and accessible, bringing us closer to the vision of blockchain technology as a seamless part of everyday life.

Challenges and Considerations

Technical Limitations

One of the primary technical challenges of Acc. abstraction lies in its integration with existing blockchain protocols. Current networks are optimized for the EOA model, and introducing a new account structure necessitates significant changes to the core protocol. This includes modifications to the way transactions are propagated in the network, how gas fees are calculated, and how the state of the blockchain is managed. Ensuring that these changes do not compromise the network's performance or security requires careful planning and extensive testing.

Compatibility with Current Systems

Another consideration is the compatibility of account abstr. with the vast ecosystem of existing blockchain applications and services. Wallets, exchanges, and other services have been built around the traditional account model. Transitioning to an acc. abstraction model will require these services to update their infrastructure, which may be a complex and resource-intensive process. Furthermore, there is a need for standardization across the industry to ensure that different implementations of account abstr. can work seamlessly together.


Acc. abstraction represents a significant leap forward in the quest for a more user-friendly blockchain experience. By streamlining the transaction process and offering enhanced security features, acc abstraction has the potential to make blockchain technology more accessible to a broader audience. However, the path to widespread adoption is not without its obstacles. Technical challenges and compatibility issues must be carefully navigated to integrate it into the existing blockchain landscape.

Key Takeaways

How to Add Gnosis Chain to MetaMask: A Simple Tutorial


03 Nov 2023
How to Add Gnosis Chain to MetaMask: A Simple Tutorial

As the cryptocurrency ecosystem expands, there is an increasing need for various blockchains with distinct capabilities. Gnosis Chain enters the scene, offering a selection of unique characteristics. By integrating Gnosis Chain with MetaMask, users can access a more comprehensive array of decentralized services. We will walk you through the steps to add Gnosis Chain to your MetaMask wallet in this tutorial.


Setting up MetaMask

Before exploring the integration of Gnosis Chain, it is crucial to have MetaMask installed and operational:

  • Download and Install: If you have not done so already, visit the official website to download and install the MetaMask browser extension.
  • Setup Account: After completing the installation, create your account and make sure to remember the provided seed phrase. This phrase serves as your primary means for account recovery, so keep it secure.
  • Secure Your Account: Protecting your MetaMask account is of utmost importance. Use a robust password and never disclose your seed phrase to anyone.

Gnosis Chain

It is always helpful to have a basic understanding before incorporating any new blockchain into your wallet:

  • Gnosis Chain Overview: Gnosis Chain, a rising star in the blockchain world, brings a range of decentralized solutions to the table, such as prediction markets and decentralized trading platforms.
  • Benefits & Features: Among Gnosis Chain's main selling points are its accelerated transaction speeds and potentially lower fees when compared to congested networks.

Tutorial: How to Add Gnosis Chain to MetaMask

In the top right-hand corner of your browser, you'll find the wallet. If pinned, click on the MetaMask fox icon; if not, click the three dots in the top-right corner. The following screen will appear:

An option to expand the wallet to a new browser page is available by clicking "Expand view:"

This action will launch MetaMask in a new tab:

By clicking on the ‘Ethereum mainnet’ in the top left corner, you can add another network. Click ‘Add Network’

Choose option ‘Add a network manually’

Then, input the information below:

Network Name: Gnosis Chain formerly xDai


ChainID: 100

Symbol: XDAI

Block Explorer URL:

After saving the settings, Gnosis Chain will be added to your network.

The Benefits of Adding Gnosis Chain to MetaMask

With multiple blockchains becoming more common, integrating Gnosis Chain with MetaMask offers numerous advantages:

Expanded Capabilities: Accessing Gnosis Chain through MetaMask opens up a collection of exclusive applications and features inherent to this particular blockchain, which may include unique dapps or cutting-edge financial products.

Diversification: The crypto domain is extensive and constantly growing. By incorporating various chains like Gnosis into MetaMask, you broaden your potential investment opportunities and decentralized application experiences, ensuring no opportunities are missed.

Speed & Cost-Effectiveness: Network congestion and high gas fees on established platforms like Ethereum can discourage many users. Gnosis Chain's architecture has the potential to provide relief through quicker transaction times and more affordable fees.

In summary, as the possibilities within the crypto sphere continue to evolve, tools like MetaMask grant users access to this expanding world. By adding chains like Gnosis, users can stay ahead in this decentralized revolution.


By bridging platforms like Gnosis Chain with accessible tools like MetaMask, individuals not only amplify their engagement with decentralized applications but also fortify their position in this expansive realm. The integration of Gnosis Chain to MetaMask epitomizes the evolution of the crypto landscape – a testament to its ever-growing diversity and potential. As we continue to delve deeper into the decentralized future, tools and integrations like these will undoubtedly play a pivotal role in shaping our digital experiences and opportunities. Whether you're seeking more efficient transactions, diverse dapp interactions, or simply a broader understanding of the crypto ecosystem, this guide's steps open doors to a new horizon.