Blockchain in Real Estate Market – a Chance for Revolution the Industry

Maciej Zieliński

04 Apr 2023
Blockchain in Real Estate Market – a Chance for Revolution the Industry

Introduction

In recent years, the total value of real estate was estimated to over 200 trillion dollars. In comparison, the value of every ounce of gold ever mined by the humanity across the generations is around 30 times lower. However, despite experiencing such a rapid growth, real estate market fails to introduce meaningful innovations to accommodate and capitalize on its success. Introducing blockchain in real estate market strives to break the mould and end the age of stagnation.

Benefits of Incorporating Blockchain in Real Estate Market

It appears that Blockchain is an answer to many persistent issues with the industry, without the risk of increasing the costs. Its incorporation brings a number of benefits, from which we can single out the most important:

Benefits of Incorporating Blockchain in Real Estate Market
Identical records for many stakeholders
Easily accessible information
Decentralisation and digitalisation of mortgage register
Opening the market for the less affluent
A chance to increase the liquidity of the assets
Clarity of purchase and renting processes
Reducing the risk of fraud or manipulation
The appearance of smart contracts

The Urgency of Introducing Blockchain in Real Estate Market

The appearance of platforms such as Zillow, which allows its users to store and access the real estate lists was a ground-breaking event for the market. Nevertheless, as the time passed by, people noticed the faulty nature of such solutions.

Subscribing to such a service generates additional costs, and so a lengthy period of sale might prove to be a strain for the budget. What is more, there is no standardisation of processes and communication within the services – this can prove detrimental towards the accuracy or even the relevancy of data stored within them.

Innovative Platforms for Real Estate Industry

Decentralized databases, powered by blockchain technology, could potentially address numerous challenges faced by the real estate industry. By distributing data across a peer-to-peer network, brokers can gain more control over the content they offer while minimizing third-party involvement. This would facilitate access to highly reliable information for users without straining their budget.

A prime example of this solution can be seen in Imbrex's real estate market, which operates on the Ethereum platform. Through encryption and data storage within the blockchain, servers have no authority over the real estate agents' sale announcements. Moreover, Imbrex's listings are updated in real time, making them far more efficient at delivering the latest information compared to traditional platforms.

Secure Storage of Land Registry on the Blockchain

Despite increased digitalization worldwide, it is concerning that most mortgage registries are still held in paper form. These important documents are susceptible to theft, manipulation, and physical destruction due to their fragile nature. The Haitian earthquake tragedy serves as a poignant example where disappearing registries led to massive conflicts over property ownership.

The vulnerability of paper forms is not the only issue; centralization of data storage also poses problems if no backup copies are available during unforeseen disasters. Consequently, storing mortgage registries within digital blocks of chain can significantly benefit the real estate industry. Decentralizing the database would lower potential risks associated with destruction or theft, and ensure that server downtime doesn't interfere with operations. Additionally, blockchain technology ensures that information cannot be edited, eliminating possibilities of manipulation and forgery.

Consistency in Real Estate Transactions through Blockchain

A major challenge within the current system is its oversaturation with stakeholders who often lack trust in one another. This leads to significant risks linked to inaccurate and fragmented data concerning real estate assets.

Inconsistency in documentation for parties involved contributes to scams, insecurity, and ambiguity within land management processes. Clients may need to undergo the same procedure multiple times, causing frustration and discouragement. The demand for change has been highlighted through RICS research, focusing on how primary market participants acquire and utilize information.

That is why, the standardisation of documents can be a key to success for the real estate market. The creation of decentralized database has been a longstanding goal of many companies, one of which is Propy. Its platform is based on the technology of database of blocks, which saves the data on a network of millions of nodes. Thanks to this, stakeholders have an access to identical copies of data, the consistency of which is verified in the real time by a software installed to each and every device. In such a model, trust is not a factor effecting the smooth exchange of information as the system forces its users to remain credible.

This and many other similar innovations together with IREDEC (International Real Estate Data Exchange Council) which is focused on standardising the basic set of data needed to enact the processes of real estate, gives us a bright perspective for the future.

Blockchain in Real Estate Market - Co-owning and Democratization Era

Currently one of the biggest obstacles which beginner investors face in the real estate market, is the high entry level. Crowd owning may turn out to be their dream solution. If I cannot afford the funding myself, why wouldn’t I just cooperate with others to achieve it? BitOfProperty is one of the companies which will allow the purchase and division of assets in separate units. The following process Is based on the tokenization – creation of virtual substitutes of real funds, which is perhaps the most revolutionary innovations of blockchain. A potential investor can purchase the individual tokens which are an equivalent of his desiredpart of a real estate. This opens up the market for the investors with smaller financial capacity and provides them with opportunities they didn’t have before.

  • Tokenisation in Practise

Pre-war villas in one of Warsaw’s most prominent districts – Żoliborz are reaching the transaction prices of around 2.5 million zlotys (approx. 650k dollars) which vastly exceeds the monetary capabilities of an average buyer. However, lets imagine that our seller tokenises the house. Then, lets consider that five separate buyers purchase one token whichcosts 500k zlotys (approx. 130k dollars). Such a price is much more affordable for a much larger group of investors. In this particular case, the five of our buyers are going to sign a smart contract with multiple signatures, which is going to make sure that every single decision concerning the house is carried out democratically and without the need of third-party supervision.

  • The Increase in Markets Liquidity

Thanks to the process of tokenisation, the real estate market will cease to be perceived as a “playground” for the richest. It will allow its democratisation. However, its far from being its only benefits.

The tokens could potentially become something of a cryptocurrency, which can be freely traded with the usage of designated platforms. This would reduce the widespread problem of finding a potential buyer. Instead of selling an entire property, its owner could sell a separate token, which could be an equivalent of its separate part.

The Clarity of Leasing

The process of renting is also made easier with Blockchain. It is possible to create a platformwhich gathers the information about the properties and their potential tenants in its decentralised network. It makes the process for both parties – the tenant gets all the information in one place and the landlord gains certainty about their reliability. Such a model would gain a significant advantage in a situation when one property would have many potential clients. The landlord would have an ability to compare the applications of every one of them and choose the most trustworthy and the one who would be willing to pay the most. Rantberry is one of the examples of such an application that allows the long-term rent of property in over 50 countries including Poland.

The Innovative Possibilities of the Smart Contracts

The aforementioned smart contracts allow its users to bring some visible changes to the real estate market. The incorporation of them which is based on the blockchain system will help at automatizing and simplifying even the most tedious and complex procedures.

An example of their usage could the automatized methods of lease agreement, which besidethe ability to secure the interests of both sides could potentially allow for supervision of established terms like monthly payment of rent. The process will be simplified and will be made cheaper because it wont have to involve the third party.

Conclusion

Smaller and bigger investors, the landlords, real estate agencies and even the state institutions could improve their actions thanks to the introduction of the Blockchain technology. Land and building registration held in a scattered database, identical records for many stakeholders, tokenisation of the value of the property is not just a musing on the futurebut a reality which is implemented even today.

You have to think of the blockchain as a new utility. It is a new utility network for moving value, moving assets.

William Mougayar, autor The Business Blockchain : Promise, Practice, and Application of the Next Internet Technology

Thirty years ago, the data was stored on mere floppy discs , which had to be brought to the meetings for sides to exchange the information. Indeed, the internet has allowed to revolutionise the real estate market but it is Blockchain which could potentially provide it with the burst of energy it desperately needs in the ever increasing demand for innovation.

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Token Engineering Process

Kajetan Olas

13 Apr 2024
Token Engineering Process

Token Engineering is an emerging field that addresses the systematic design and engineering of blockchain-based tokens. It applies rigorous mathematical methods from the Complex Systems Engineering discipline to tokenomics design.

In this article, we will walk through the Token Engineering Process and break it down into three key stages. Discovery Phase, Design Phase, and Deployment Phase.

Discovery Phase of Token Engineering Process

The first stage of the token engineering process is the Discovery Phase. It focuses on constructing high-level business plans, defining objectives, and identifying problems to be solved. That phase is also the time when token engineers first define key stakeholders in the project.

Defining the Problem

This may seem counterintuitive. Why would we start with the problem when designing tokenomics? Shouldn’t we start with more down-to-earth matters like token supply? The answer is No. Tokens are a medium for creating and exchanging value within a project’s ecosystem. Since crypto projects draw their value from solving problems that can’t be solved through TradFi mechanisms, their tokenomics should reflect that. 

The industry standard, developed by McKinsey & Co. and adapted to token engineering purposes by Outlier Ventures, is structuring the problem through a logic tree, following MECE.
MECE stands for Mutually Exclusive, Collectively Exhaustive. Mutually Exclusive means that problems in the tree should not overlap. Collectively Exhaustive means that the tree should cover all issues.

In practice, the “Problem” should be replaced by a whole problem statement worksheet. The same will hold for some of the boxes.
A commonly used tool for designing these kinds of diagrams is the Miro whiteboard.

Identifying Stakeholders and Value Flows in Token Engineering

This part is about identifying all relevant actors in the ecosystem and how value flows between them. To illustrate what we mean let’s consider an example of NFT marketplace. In its case, relevant actors might be sellers, buyers, NFT creators, and a marketplace owner. Possible value flow when conducting a transaction might be: buyer gets rid of his tokens, seller gets some of them, marketplace owner gets some of them as fees, and NFT creators get some of them as royalties.

Incentive Mechanisms Canvas

The last part of what we consider to be in the Discovery Phase is filling the Incentive Mechanisms Canvas. After successfully identifying value flows in the previous stage, token engineers search for frictions to desired behaviors and point out the undesired behaviors. For example, friction to activity on an NFT marketplace might be respecting royalty fees by marketplace owners since it reduces value flowing to the seller.

source: https://www.canva.com/design/DAFDTNKsIJs/8Ky9EoJJI7p98qKLIu2XNw/view#7

Design Phase of Token Engineering Process

The second stage of the Token Engineering Process is the Design Phase in which you make use of high-level descriptions from the previous step to come up with a specific design of the project. This will include everything that can be usually found in crypto whitepapers (e.g. governance mechanisms, incentive mechanisms, token supply, etc). After finishing the design, token engineers should represent the whole value flow and transactional logic on detailed visual diagrams. These diagrams will be a basis for creating mathematical models in the Deployment Phase. 

Token Engineering Artonomous Design Diagram
Artonomous design diagram, source: Artonomous GitHub

Objective Function

Every crypto project has some objective. The objective can consist of many goals, such as decentralization or token price. The objective function is a mathematical function assigning weights to different factors that influence the main objective in the order of their importance. This function will be a reference for machine learning algorithms in the next steps. They will try to find quantitative parameters (e.g. network fees) that maximize the output of this function.
Modified Metcalfe’s Law can serve as an inspiration during that step. It’s a framework for valuing crypto projects, but we believe that after adjustments it can also be used in this context.

Deployment Phase of Token Engineering Process

The Deployment Phase is final, but also the most demanding step in the process. It involves the implementation of machine learning algorithms that test our assumptions and optimize quantitative parameters. Token Engineering draws from Nassim Taleb’s concept of Antifragility and extensively uses feedback loops to make a system that gains from arising shocks.

Agent-based Modelling 

In agent-based modeling, we describe a set of behaviors and goals displayed by each agent participating in the system (this is why previous steps focused so much on describing stakeholders). Each agent is controlled by an autonomous AI and continuously optimizes his strategy. He learns from his experience and can mimic the behavior of other agents if he finds it effective (Reinforced Learning). This approach allows for mimicking real users, who adapt their strategies with time. An example adaptive agent would be a cryptocurrency trader, who changes his trading strategy in response to experiencing a loss of money.

Monte Carlo Simulations

Token Engineers use the Monte Carlo method to simulate the consequences of various possible interactions while taking into account the probability of their occurrence. By running a large number of simulations it’s possible to stress-test the project in multiple scenarios and identify emergent risks.

Testnet Deployment

If possible, it's highly beneficial for projects to extend the testing phase even further by letting real users use the network. Idea is the same as in agent-based testing - continuous optimization based on provided metrics. Furthermore, in case the project considers airdropping its tokens, giving them to early users is a great strategy. Even though part of the activity will be disingenuine and airdrop-oriented, such strategy still works better than most.

Time Duration

Token engineering process may take from as little as 2 weeks to as much as 5 months. It depends on the project category (Layer 1 protocol will require more time, than a simple DApp), and security requirements. For example, a bank issuing its digital token will have a very low risk tolerance.

Required Skills for Token Engineering

Token engineering is a multidisciplinary field and requires a great amount of specialized knowledge. Key knowledge areas are:

  • Systems Engineering
  • Machine Learning
  • Market Research
  • Capital Markets
  • Current trends in Web3
  • Blockchain Engineering
  • Statistics

Summary

The token engineering process consists of 3 steps: Discovery Phase, Design Phase, and Deployment Phase. It’s utilized mostly by established blockchain projects, and financial institutions like the International Monetary Fund. Even though it’s a very resource-consuming process, we believe it’s worth it. Projects that went through scrupulous design and testing before launch are much more likely to receive VC funding and be in the 10% of crypto projects that survive the bear market. Going through that process also has a symbolic meaning - it shows that the project is long-term oriented.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.

FAQ

What does token engineering process look like?

  • Token engineering process is conducted in a 3-step methodical fashion. This includes Discovery Phase, Design Phase, and Deployment Phase. Each of these stages should be tailored to the specific needs of a project.

Is token engineering meant only for big projects?

  • We recommend that even small projects go through a simplified design and optimization process. This increases community's trust and makes sure that the tokenomics doesn't have any obvious flaws.

How long does the token engineering process take?

  • It depends on the project and may range from 2 weeks to 5 months.

What is Berachain? 🐻 ⛓️ + Proof-of-Liquidity Explained

Karolina

18 Mar 2024
What is Berachain? 🐻 ⛓️ + Proof-of-Liquidity Explained

Enter Berachain: a high-performance, EVM-compatible blockchain that is set to redefine the landscape of decentralized applications (dApps) and blockchain services. Built on the innovative Proof-of-Liquidity consensus and leveraging the robust Polaris framework alongside the CometBFT consensus engine, Berachain is poised to offer an unprecedented blend of efficiency, security, and user-centric benefits. Let's dive into what makes it a groundbreaking development in the blockchain ecosystem.

What is Berachain?

Overview

Berachain is an EVM-compatible Layer 1 (L1) blockchain that stands out through its adoption of the Proof-of-Liquidity (PoL) consensus mechanism. Designed to address the critical challenges faced by decentralized networks. It introduces a cutting-edge approach to blockchain governance and operations.

Key Features

  • High-performance Capabilities. Berachain is engineered for speed and scalability, catering to the growing demand for efficient blockchain solutions.
  • EVM Compatibility. It supports all Ethereum tooling, operations, and smart contract languages, making it a seamless transition for developers and projects from the Ethereum ecosystem.
  • Proof-of-Liquidity.This novel consensus mechanism focuses on building liquidity, decentralizing stake, and aligning the interests of validators and protocol developers.

MUST READ: Docs

EVM-Compatible vs EVM-Equivalent

EVM-Compatible

EVM compatibility means a blockchain can interact with Ethereum's ecosystem to some extent. It can interact supporting its smart contracts and tools but not replicating the entire EVM environment.

EVM-Equivalent

An EVM-equivalent blockchain, on the other hand, aims to fully replicate Ethereum's environment. It ensures complete compatibility and a smooth transition for developers and users alike.

Berachain's Position

Berachain can be considered an "EVM-equivalent-plus" blockchain. It supports all Ethereum operations, tooling, and additional functionalities that optimize for its unique Proof-of-Liquidity and abstracted use cases.

Berachain Modular First Approach

At the heart of Berachain's development philosophy is the Polaris EVM framework. It's a testament to the blockchain's commitment to modularity and flexibility. This approach allows for the easy separation of the EVM runtime layer, ensuring that Berachain can adapt and evolve without compromising on performance or security.

Proof Of Liquidity Overview

High-Level Model Objectives

  • Systemically Build Liquidity. By enhancing trading efficiency, price stability, and network growth, Berachain aims to foster a thriving ecosystem of decentralized applications.
  • Solve Stake Centralization. The PoL consensus works to distribute stake more evenly across the network, preventing monopolization and ensuring a decentralized, secure blockchain.
  • Align Protocols and Validators. Berachain encourages a symbiotic relationship between validators and the broader protocol ecosystem.

Proof-of-Liquidity vs Proof-of-Stake

Unlike traditional Proof of Stake (PoS), which often leads to stake centralization and reduced liquidity, Proof of Liquidity (PoL) introduces mechanisms to incentivize liquidity provision and ensure a fairer, more decentralized network. Berachain separates the governance token (BGT) from the chain's gas token (BERA) and incentives liquidity through BEX pools. Berachain's PoL aims to overcome the limitations of PoS, fostering a more secure and user-centric blockchain.

Berachain EVM and Modular Approach

Polaris EVM

Polaris EVM is the cornerstone of Berachain's EVM compatibility, offering developers an enhanced environment for smart contract execution that includes stateful precompiles and custom modules. This framework ensures that Berachain not only meets but exceeds the capabilities of the traditional Ethereum Virtual Machine.

CometBFT

The CometBFT consensus engine underpins Berachain's network, providing a secure and efficient mechanism for transaction verification and block production. By leveraging the principles of Byzantine fault tolerance (BFT), CometBFT ensures the integrity and resilience of the Berachain blockchain.

Conclusion

Berachain represents a significant leap forward in blockchain technology, combining the best of Ethereum's ecosystem with innovative consensus mechanisms and a modular development approach. As the blockchain landscape continues to evolve, Berachain stands out as a promising platform for developers, users, and validators alike, offering a scalable, efficient, and inclusive environment for decentralized applications and services.

Resources

For those interested in exploring further, a wealth of resources is available, including the Berachain documentation, GitHub repository, and community forums. It offers a compelling vision for the future of blockchain technology, marked by efficiency, security, and community-driven innovation.

FAQ

How is Berachain different?

  • It integrates Proof-of-Liquidity to address stake centralization and enhance liquidity, setting it apart from other blockchains.

Is Berachain EVM-compatible?

  • Yes, it supports Ethereum's tooling and smart contract languages, facilitating easy migration of dApps.

Can it handle high transaction volumes?

  • Yes, thanks to the Polaris framework and CometBFT consensus engine, it's built for scalability and high throughput.