Behavioral Economics in Token Design

Kajetan Olas

22 Apr 2024
Behavioral Economics in Token Design

Behavioral economics is a field that explores the effects of psychological factors on economic decision-making. This branch of study is especially pertinent while designing a token since user perception can significantly impact a token's adoption.

We will delve into how token design choices, such as staking yields, token inflation, and lock-up periods, influence consumer behavior. Research studies reveal that the most significant factor for a token's attractiveness isn’t its functionality, but its past price performance. This underscores the impact of speculative factors. Tokens that have shown previous price increases are preferred over those with more beneficial economic features.

Understanding Behavioral Tokenomics

Understanding User Motivations

The design of a cryptocurrency token can significantly influence user behavior by leveraging common cognitive biases and decision-making processes. For instance, the concept of "scarcity" can create a perceived value increase, prompting users to buy or hold a token in anticipation of future gains. Similarly, "loss aversion," a foundational principle of behavioral economics, suggests that the pain of losing is psychologically more impactful than the pleasure of an equivalent gain. In token design, mechanisms that minimize perceived losses (e.g. anti-dumping measures) can encourage long-term holding.

Incentives and Rewards

Behavioral economics also provides insight into how incentives can be structured to maximize user participation. Cryptocurrencies often use tokens as a form of reward for various behaviors, including mining, staking, or participating in governance through voting. The way these rewards are framed and distributed can greatly affect their effectiveness. For example, offering tokens as rewards for achieving certain milestones can tap into the 'endowment effect,' where people ascribe more value to things simply because they own them.

Social Proof and Network Effects

Social proof, where individuals copy the behavior of others, plays a crucial role in the adoption of tokens. Tokens that are seen being used and promoted by influential figures within the community can quickly gain traction, as new users emulate successful investors. The network effect further amplifies this, where the value of a token increases as more people start using it. This can be seen in the rapid growth of tokens like Ethereum, where the broad adoption of its smart contract functionality created a snowball effect, attracting even more developers and users.

Token Utility and Behavioral Levers

The utility of a token—what it can be used for—is also crucial. Tokens designed to offer real-world applications beyond mere financial speculation can provide more stable value retention. Integrating behavioral economics into utility design involves creating tokens that not only serve practical purposes but also resonate on an emotional level with users, encouraging engagement and investment. For example, tokens that offer governance rights might appeal to users' desire for control and influence within a platform, encouraging them to hold rather than sell.

Understanding Behavioral Tokenomics

Intersection of Behavioral Economics and Tokenomics

Behavioral economics examines how psychological influences, various biases, and the way in which information is framed affect individual decisions. In tokenomics, these factors can significantly impact the success or failure of a cryptocurrency by influencing user behavior towards investment

Influence of Psychological Factors on Token Attraction

A recent study observed that the attractiveness of a token often hinges more on its historical price performance than on intrinsic benefits like yield returns or innovative economic models. This emphasizes the fact that the cryptocurrency sector is still young, and therefore subject to speculative behaviors

The Effect of Presentation and Context

Another interesting finding from the study is the impact of how tokens are presented. In scenarios where tokens are evaluated separately, the influence of their economic attributes on consumer decisions is minimal. However, when tokens are assessed side by side, these attributes become significantly more persuasive. This highlights the importance of context in economic decision-making—a core principle of behavioral economics. It’s easy to translate this into real-life example - just think about the concept of staking yields. When told that the yield on e.g. Cardano is 5% you might not think much of it. But, if you were simultaneously told that Anchor’s yield is 19%, then that 5% seems like a tragic deal.

Implications for Token Designers

The application of behavioral economics to the design of cryptocurrency tokens involves leveraging human psychology to encourage desired behaviors. Here are several core principles of behavioral economics and how they can be effectively utilized in token design:

Leveraging Price Performance

Studies show clearly: “price going up” tends to attract users more than most other token attributes. This finding implies that token designers need to focus on strategies that can showcase their economic effects in the form of price increases. This means that e.g. it would be more beneficial to conduct a buy-back program than to conduct an airdrop.

Scarcity and Perceived Value

Scarcity triggers a sense of urgency and increases perceived value. Cryptocurrency tokens can be designed to have a limited supply, mimicking the scarcity of resources like gold. This not only boosts the perceived rarity and value of the tokens but also drives demand due to the "fear of missing out" (FOMO). By setting a cap on the total number of tokens, developers can create a natural scarcity that may encourage early adoption and long-term holding.

Initial Supply Considerations

The initial supply represents the number of tokens that are available in circulation immediately following the token's launch. The chosen number can influence early market perceptions. For instance, a large initial supply might suggest a lower value per token, which could attract speculators. Data shows that tokens with low nominal value are highly volatile and generally underperform. Understanding how the initial supply can influence investor behavior is important for ensuring the token's stability.

Managing Maximum Supply and Inflation

A finite maximum supply can safeguard the token against inflation, potentially enhancing its value by ensuring scarcity. On the other hand, the inflation rate, which defines the pace at which new tokens are introduced, influences the token's value and user trust.

Investors in cryptocurrency markets show a notable aversion to deflationary tokenomics. Participants are less likely to invest in tokens with a deflationary framework, viewing them as riskier and potentially less profitable. Research suggests that while moderate inflation can be perceived neutrally or even positively, high inflation does not enhance attractiveness, and deflation is distinctly unfavorable.

Source: Behavioral Tokenomics: Consumer Perceptions of Cryptocurrency Token Design

These findings suggest that token designers should avoid high deflation rates, which could deter investment and user engagement. Instead, a balanced approach to inflation, avoiding extremes, appears to be preferred among cryptocurrency investors.

Loss Aversion

People tend to prefer avoiding losses to acquiring equivalent gains; this is known as loss aversion. In token design, this can be leveraged by introducing mechanisms that protect against losses, such as staking rewards that offer consistent returns or features that minimize price volatility. Additionally, creating tokens that users can "earn" through participation or contribution to the network can tap into this principle by making users feel they are safeguarding an investment or adding protective layers to their holdings.

Social Proof

Social proof is a powerful motivator in user adoption and engagement. When potential users see others adopting a token, especially influential figures or peers, they are more likely to perceive it as valuable and trustworthy. Integrating social proof into token marketing strategies, such as showcasing high-profile endorsements or community support, can significantly enhance user acquisition and retention.

Mental Accounting

Mental accounting involves how people categorize and treat money differently depending on its source or intended use. Tokens can be designed to encourage specific spending behaviors by being categorized for certain types of transactions—like tokens that are specifically for governance, others for staking, and others still for transaction fees. By distinguishing tokens in this way, users can more easily rationalize holding or spending them based on their designated purposes.

Endowment Effect

The endowment effect occurs when people value something more highly simply because they own it. For tokenomics, creating opportunities for users to feel ownership can increase attachment and perceived value. This can be done through mechanisms that reward users with tokens for participation or contribution, thus making them more reluctant to part with their holdings because they value them more highly.

Conclusion

By considering how behavioral factors influence market perception, token engineers can create much more effective ecosystems. Ensuring high demand for the token, means ensuring proper funding for the project in general.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.

FAQ

How does the initial supply of a token influence its market perception?

  • The initial supply sets the perceived value of a token; a larger supply might suggest a lower per-token value.

Why is the maximum supply important in token design?

  • A finite maximum supply signals scarcity, helping protect against inflation and enhance long-term value.

How do investors perceive inflation and deflation in cryptocurrencies?

  • Investors generally dislike deflationary tokens and view them as risky. Moderate inflation is seen neutrally or positively, while high inflation is not favored.

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

AI-Driven Frontend Automation: Elevating Developer Productivity to New Heights

Gracjan Prusik

11 Mar 2025
AI-Driven Frontend Automation: Elevating Developer Productivity to New Heights

AI Revolution in the Frontend Developer's Workshop

In today's world, programming without AI support means giving up a powerful tool that radically increases a developer's productivity and efficiency. For the modern developer, AI in frontend automation is not just a curiosity, but a key tool that enhances productivity. From automatically generating components, to refactoring, and testing – AI tools are fundamentally changing our daily work, allowing us to focus on the creative aspects of programming instead of the tedious task of writing repetitive code. In this article, I will show how these tools are most commonly used to work faster, smarter, and with greater satisfaction.

This post kicks off a series dedicated to the use of AI in frontend automation, where we will analyze and discuss specific tools, techniques, and practical use cases of AI that help developers in their everyday tasks.

AI in Frontend Automation – How It Helps with Code Refactoring

One of the most common uses of AI is improving code quality and finding errors. These tools can analyze code and suggest optimizations. As a result, we will be able to write code much faster and significantly reduce the risk of human error.

How AI Saves Us from Frustrating Bugs

Imagine this situation: you spend hours debugging an application, not understanding why data isn't being fetched. Everything seems correct, the syntax is fine, yet something isn't working. Often, the problem lies in small details that are hard to catch when reviewing the code.

Let’s take a look at an example:

function fetchData() {
    fetch("htts://jsonplaceholder.typicode.com/posts")
      .then((response) => response.json())
      .then((data) => console.log(data))
      .catch((error) => console.error(error));
}

At first glance, the code looks correct. However, upon running it, no data is retrieved. Why? There’s a typo in the URL – "htts" instead of "https." This is a classic example of an error that could cost a developer hours of frustrating debugging.

When we ask AI to refactor this code, not only will we receive a more readable version using newer patterns (async/await), but also – and most importantly – AI will automatically detect and fix the typo in the URL:

async function fetchPosts() {
    try {
      const response = await fetch(
        "https://jsonplaceholder.typicode.com/posts"
      );
      const data = await response.json();
      console.log(data);
    } catch (error) {
      console.error(error);
    }
}

How AI in Frontend Automation Speeds Up UI Creation

One of the most obvious applications of AI in frontend development is generating UI components. Tools like GitHub Copilot, ChatGPT, or Claude can generate component code based on a short description or an image provided to them.

With these tools, we can create complex user interfaces in just a few seconds. Generating a complete, functional UI component often takes less than a minute. Furthermore, the generated code is typically error-free, includes appropriate animations, and is fully responsive, adapting to different screen sizes. It is important to describe exactly what we expect.

Here’s a view generated by Claude after entering the request: “Based on the loaded data, display posts. The page should be responsive. The main colors are: #CCFF89, #151515, and #E4E4E4.”

Generated posts view

AI in Code Analysis and Understanding

AI can analyze existing code and help understand it, which is particularly useful in large, complex projects or code written by someone else.

Example: Generating a summary of a function's behavior

Let’s assume we have a function for processing user data, the workings of which we don’t understand at first glance. AI can analyze the code and generate a readable explanation:

function processUserData(users) {
  return users
    .filter(user => user.isActive) // Checks the `isActive` value for each user and keeps only the objects where `isActive` is true
    .map(user => ({ 
      id: user.id, // Retrieves the `id` value from each user object
      name: `${user.firstName} ${user.lastName}`, // Creates a new string by combining `firstName` and `lastName`
      email: user.email.toLowerCase(), // Converts the email address to lowercase
    }));
}

In this case, AI not only summarizes the code's functionality but also breaks down individual operations into easier-to-understand segments.

AI in Frontend Automation – Translations and Error Detection

Every frontend developer knows that programming isn’t just about creatively building interfaces—it also involves many repetitive, tedious tasks. One of these is implementing translations for multilingual applications (i18n). Adding translations for each key in JSON files and then verifying them can be time-consuming and error-prone.

However, AI can significantly speed up this process. Using ChatGPT, DeepSeek, or Claude allows for automatic generation of translations for the user interface, as well as detecting linguistic and stylistic errors.

Example:

We have a translation file in JSON format:

{
  "welcome_message": "Welcome to our application!",
  "logout_button": "Log out",
  "error_message": "Something went wrong. Please try again later."
}

AI can automatically generate its Polish version:

{
  "welcome_message": "Witaj w naszej aplikacji!",
  "logout_button": "Wyloguj się",
  "error_message": "Coś poszło nie tak. Spróbuj ponownie później."
}

Moreover, AI can detect spelling errors or inconsistencies in translations. For example, if one part of the application uses "Log out" and another says "Exit," AI can suggest unifying the terminology.

This type of automation not only saves time but also minimizes the risk of human errors. And this is just one example – AI also assists in generating documentation, writing tests, and optimizing performance, which we will discuss in upcoming articles.

Summary

Artificial intelligence is transforming the way frontend developers work daily. From generating components and refactoring code to detecting errors, automating testing, and documentation—AI significantly accelerates and streamlines the development process. Without these tools, we would lose a lot of valuable time, which we certainly want to avoid.

In the next parts of this series, we will cover topics such as:

Stay tuned to keep up with the latest insights!

The Ultimate Web3 Backend Guide: Supercharge dApps with APIs

Tomasz Dybowski

04 Mar 2025
The Ultimate Web3 Backend Guide: Supercharge dApps with APIs

Introduction

Web3 backend development is essential for building scalable, efficient and decentralized applications (dApps) on EVM-compatible blockchains like Ethereum, Polygon, and Base. A robust Web3 backend enables off-chain computations, efficient data management and better security, ensuring seamless interaction between smart contracts, databases and frontend applications.

Unlike traditional Web2 applications that rely entirely on centralized servers, Web3 applications aim to minimize reliance on centralized entities. However, full decentralization isn't always possible or practical, especially when it comes to high-performance requirements, user authentication or storing large datasets. A well-structured backend in Web3 ensures that these limitations are addressed, allowing for a seamless user experience while maintaining decentralization where it matters most.

Furthermore, dApps require efficient backend solutions to handle real-time data processing, reduce latency, and provide smooth user interactions. Without a well-integrated backend, users may experience delays in transactions, inconsistencies in data retrieval, and inefficiencies in accessing decentralized services. Consequently, Web3 backend development is a crucial component in ensuring a balance between decentralization, security, and functionality.

This article explores:

  • When and why Web3 dApps need a backend
  • Why not all applications should be fully on-chain
  • Architecture examples of hybrid dApps
  • A comparison between APIs and blockchain-based logic

This post kicks off a Web3 backend development series, where we focus on the technical aspects of implementing Web3 backend solutions for decentralized applications.

Why Do Some Web3 Projects Need a Backend?

Web3 applications seek to achieve decentralization, but real-world constraints often necessitate hybrid architectures that include both on-chain and off-chain components. While decentralized smart contracts provide trustless execution, they come with significant limitations, such as high gas fees, slow transaction finality, and the inability to store large amounts of data. A backend helps address these challenges by handling logic and data management more efficiently while still ensuring that core transactions remain secure and verifiable on-chain.

Moreover, Web3 applications must consider user experience. Fully decentralized applications often struggle with slow transaction speeds, which can negatively impact usability. A hybrid backend allows for pre-processing operations off-chain while committing final results to the blockchain. This ensures that users experience fast and responsive interactions without compromising security and transparency.

While decentralization is a core principle of blockchain technology, many dApps still rely on a Web2-style backend for practical reasons:

1. Performance & Scalability in Web3 Backend Development

  • Smart contracts are expensive to execute and require gas fees for every interaction.
  • Offloading non-essential computations to a backend reduces costs and improves performance.
  • Caching and load balancing mechanisms in traditional backends ensure smooth dApp performance and improve response times for dApp users.
  • Event-driven architectures using tools like Redis or Kafka can help manage asynchronous data processing efficiently.

2. Web3 APIs for Data Storage and Off-Chain Access

  • Storing large amounts of data on-chain is impractical due to high costs.
  • APIs allow dApps to store & fetch off-chain data (e.g. user profiles, transaction history).
  • Decentralized storage solutions like IPFS, Arweave and Filecoin can be used for storing immutable data (e.g. NFT metadata), but a Web2 backend helps with indexing and querying structured data efficiently.

3. Advanced Logic & Data Aggregation in Web3 Backend

  • Some dApps need complex business logic that is inefficient or impossible to implement in a smart contract.
  • Backend APIs allow for data aggregation from multiple sources, including oracles (e.g. Chainlink) and off-chain databases.
  • Middleware solutions like The Graph help in indexing blockchain data efficiently, reducing the need for on-chain computation.

4. User Authentication & Role Management in Web3 dApps

  • Many applications require user logins, permissions or KYC compliance.
  • Blockchain does not natively support session-based authentication, requiring a backend for handling this logic.
  • Tools like Firebase Auth, Auth0 or Web3Auth can be used to integrate seamless authentication for Web3 applications.

5. Cost Optimization with Web3 APIs

  • Every change in a smart contract requires a new audit, costing tens of thousands of dollars.
  • By handling logic off-chain where possible, projects can minimize expensive redeployments.
  • Using layer 2 solutions like Optimism, Arbitrum and zkSync can significantly reduce gas costs.

Web3 Backend Development: Tools and Technologies

A modern Web3 backend integrates multiple tools to handle smart contract interactions, data storage, and security. Understanding these tools is crucial to developing a scalable and efficient backend for dApps. Without the right stack, developers may face inefficiencies, security risks, and scaling challenges that limit the adoption of their Web3 applications.

Unlike traditional backend development, Web3 requires additional considerations, such as decentralized authentication, smart contract integration, and secure data management across both on-chain and off-chain environments.

Here’s an overview of the essential Web3 backend tech stack:

1. API Development for Web3 Backend Services

  • Node.js is the go-to backend runtime good for Web3 applications due to its asynchronous event-driven architecture.
  • NestJS is a framework built on top of Node.js, providing modular architecture and TypeScript support for structured backend development.

2. Smart Contract Interaction Libraries for Web3 Backend

  • Ethers.js and Web3.js are TypeScript/JavaScript libraries used for interacting with Ethereum-compatible blockchains.

3. Database Solutions for Web3 Backend

  • PostgreSQL: Structured database used for storing off-chain transactional data.
  • MongoDB: NoSQL database for flexible schema data storage.
  • Firebase: A set of tools used, among other things, for user authentication.
  • The Graph: Decentralized indexing protocol used to query blockchain data efficiently.

4. Cloud Services and Hosting for Web3 APIs

When It Doesn't Make Sense to Go Fully On-Chain

Decentralization is valuable, but it comes at a cost. Fully on-chain applications suffer from performance limitations, high costs and slow execution speeds. For many use cases, a hybrid Web3 architecture that utilizes a mix of blockchain-based and off-chain components provides a more scalable and cost-effective solution.

In some cases, forcing full decentralization is unnecessary and inefficient. A hybrid Web3 architecture balances decentralization and practicality by allowing non-essential logic and data storage to be handled off-chain while maintaining trustless and verifiable interactions on-chain.

The key challenge when designing a hybrid Web3 backend is ensuring that off-chain computations remain auditable and transparent. This can be achieved through cryptographic proofs, hash commitments and off-chain data attestations that anchor trust into the blockchain while improving efficiency.

For example, Optimistic Rollups and ZK-Rollups allow computations to happen off-chain while only submitting finalized data to Ethereum, reducing fees and increasing throughput. Similarly, state channels enable fast, low-cost transactions that only require occasional settlement on-chain.

A well-balanced Web3 backend architecture ensures that critical dApp functionalities remain decentralized while offloading resource-intensive tasks to off-chain systems. This makes applications cheaper, faster and more user-friendly while still adhering to blockchain's principles of transparency and security.

Example: NFT-based Game with Off-Chain Logic

Imagine a Web3 game where users buy, trade and battle NFT-based characters. While asset ownership should be on-chain, other elements like:

  • Game logic (e.g., matchmaking, leaderboard calculations)
  • User profiles & stats
  • Off-chain notifications

can be handled off-chain to improve speed and cost-effectiveness.

Architecture Diagram

Below is an example diagram showing how a hybrid Web3 application splits responsibilities between backend and blockchain components.

Hybrid Web3 Architecture

Comparing Web3 Backend APIs vs. Blockchain-Based Logic

FeatureWeb3 Backend (API)Blockchain (Smart Contracts)
Change ManagementCan be updated easilyEvery change requires a new contract deployment
CostTraditional hosting feesHigh gas fees + costly audits
Data StorageCan store large datasetsLimited and expensive storage
SecuritySecure but relies on centralized infrastructureFully decentralized & trustless
PerformanceFast response timesLimited by blockchain throughput

Reducing Web3 Costs with AI Smart Contract Audit

One of the biggest pain points in Web3 development is the cost of smart contract audits. Each change to the contract code requires a new audit, often costing tens of thousands of dollars.

To address this issue, Nextrope is developing an AI-powered smart contract auditing tool, which:

  • Reduces audit costs by automating code analysis.
  • Speeds up development cycles by catching vulnerabilities early.
  • Improves security by providing quick feedback.

This AI-powered solution will be a game-changer for the industry, making smart contract development more cost-effective and accessible.

Conclusion

Web3 backend development plays a crucial role in scalable and efficient dApps. While full decentralization is ideal in some cases, many projects benefit from a hybrid architecture, where off-chain components optimize performance, reduce costs and improve user experience.

In future posts in this Web3 backend series, we’ll explore specific implementation details, including:

  • How to design a Web3 API for dApps
  • Best practices for integrating backend services
  • Security challenges and solutions

Stay tuned for the next article in this series!