Revolutionizing Software Testing: How AI-Powered Tools are Enhancing Test Automation and Optimization

Paulina Lewandowska

21 Feb 2023
Revolutionizing Software Testing: How AI-Powered Tools are Enhancing Test Automation and Optimization

Introduction

In the ever-evolving world of software development, it has become increasingly important to ensure that software products are reliable, scalable, and efficient. One of the key components of software development is testing, which involves checking for defects and ensuring that the software meets the required specifications. With the increasing complexity of software, it has become more challenging to manually test software products. AI-powered testing tools have emerged as a solution to this problem. In this article, we will explore some of the top AI-powered testing tools that are changing the landscape of software testing.

1. Test Automation Tools

By automating the execution of test cases, test automation solutions reduce down on the time and labor needed for manual testing. Machine learning techniques are used by AI-powered test automation technologies to learn from prior test runs and improve test performance. Regression testing can be automated with the use of these tools, freeing up testers to work on more difficult jobs. By running a large number of test cases quickly—something manual testing cannot do—they can also aid in enhancing test coverage.

The earlier errors are found in the software development lifecycle, the quicker and less expensive it is to rectify them. This is another benefit of AI-powered test automation technologies. They can also offer insightful information about the functionality and behavior of the product, assisting in pinpointing areas that could use improvement.

Examples of tools:

2. Intelligent Test Data Management

The process of creating, storing, and maintaining test data, which is necessary for writing and running test cases, is known as intelligent test data management. The generation of appropriate test data that truly depicts the behavior of the software, however, can be time-consuming and difficult. In order to solve this problem, AI-powered test data management systems use machine learning algorithms to evaluate the behavior of the program and provide test data that simulates real-world scenarios, hence enhancing the quality of test cases and assuring better coverage of test scenarios. By reducing the time and effort required to create and manage test data, these tools help in optimizing the testing process. Additionally, they help identify data dependencies and relationships, ensuring that the test data accurately reflects the software's behavior, while also ensuring data privacy and security by masking sensitive data and complying with data protection regulations.

Examples of tools:

3. Intelligent Test Generation

Intelligent test generation technologies examine code changes or business requirements and automatically produce test cases using machine learning methods. In complicated software projects, where writing test cases can be labor-intensive and error-prone, this is especially advantageous. These technologies enhance testing quality while reducing the time and effort needed to generate test cases by automating the test generation process. The generated test cases ensure higher test coverage by covering the most important scenarios and detecting edge cases and scenarios that may be challenging for human testers to uncover. Also, automating the test creation process allows testers to concentrate on testing jobs that are more complicated, resulting in more effective testing procedures and higher-quality software products.

Examples of tools:

4. Defect Prediction and Analysis

AI may replicate actual situations and create load on the system to gauge its performance, dependability, and scalability. These AI-powered performance testing tools can assist in locating performance snags and other problems that may have an influence on the user experience. They evaluate the system's behavior under stress using machine learning techniques to find patterns that can improve the system's performance. These technologies can provide precise and trustworthy insights into the system's performance by replicating real-world events. This enables teams to find and fix performance problems before they have an impact on users.

Examples of tools:

5. Performance Testing

AI can produce loads on the system to test its performance, dependability, and scalability by simulating real-world events. The user experience can be negatively impacted by performance bottlenecks and other problems, which can be found with these AI-powered performance testing tools. They examine the system's performance under load using machine learning methods to look for patterns that might be improved. These technologies may simulate real-world events and offer precise and trustworthy insights into the system's performance, allowing teams to find and fix performance problems before they have an impact on consumers.

Examples of tools:

6.Intelligent Test Reporting

AI-powered test reporting systems can generate results that are simple to read and understand while also automating the reporting process, giving users important insights about the software's quality and the efficiency of the testing process. These reports offer real-time insights into the testing process and may be used to spot patterns and trends in defects, test coverage, and other metrics. This allows teams to make data-driven decisions and find problems as soon as possible. These tools can assist in streamlining the testing process and enhancing the overall quality of the software by saving time and enhancing the accuracy and efficacy of the reporting process.Teams can have a deeper understanding of the insights provided by the reports and take the necessary action with the use of natural language processing and other machine learning techniques employed in these products.

Examples of tools:

Conclusion

The way we approach software testing has changed as a result of AI-powered testing tools. They have greatly lowered the amount of time and effort needed for testing while simultaneously raising the standard of testing. These tools may imitate real-world situations, produce test cases, spot performance bottlenecks, and offer insightful information about the testing procedure, all of which help produce higher-quality software. Software development teams can save time, cut expenses, and increase the dependability and scalability of their software products by utilizing these tools. A critical step in ensuring that software development keeps up with the needs of the current world is the introduction of AI-powered testing technologies.

Also, don't miss these free AI tools for developers!

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Token Engineering Process

Kajetan Olas

13 Apr 2024
Token Engineering Process

Token Engineering is an emerging field that addresses the systematic design and engineering of blockchain-based tokens. It applies rigorous mathematical methods from the Complex Systems Engineering discipline to tokenomics design.

In this article, we will walk through the Token Engineering Process and break it down into three key stages. Discovery Phase, Design Phase, and Deployment Phase.

Discovery Phase of Token Engineering Process

The first stage of the token engineering process is the Discovery Phase. It focuses on constructing high-level business plans, defining objectives, and identifying problems to be solved. That phase is also the time when token engineers first define key stakeholders in the project.

Defining the Problem

This may seem counterintuitive. Why would we start with the problem when designing tokenomics? Shouldn’t we start with more down-to-earth matters like token supply? The answer is No. Tokens are a medium for creating and exchanging value within a project’s ecosystem. Since crypto projects draw their value from solving problems that can’t be solved through TradFi mechanisms, their tokenomics should reflect that. 

The industry standard, developed by McKinsey & Co. and adapted to token engineering purposes by Outlier Ventures, is structuring the problem through a logic tree, following MECE.
MECE stands for Mutually Exclusive, Collectively Exhaustive. Mutually Exclusive means that problems in the tree should not overlap. Collectively Exhaustive means that the tree should cover all issues.

In practice, the “Problem” should be replaced by a whole problem statement worksheet. The same will hold for some of the boxes.
A commonly used tool for designing these kinds of diagrams is the Miro whiteboard.

Identifying Stakeholders and Value Flows in Token Engineering

This part is about identifying all relevant actors in the ecosystem and how value flows between them. To illustrate what we mean let’s consider an example of NFT marketplace. In its case, relevant actors might be sellers, buyers, NFT creators, and a marketplace owner. Possible value flow when conducting a transaction might be: buyer gets rid of his tokens, seller gets some of them, marketplace owner gets some of them as fees, and NFT creators get some of them as royalties.

Incentive Mechanisms Canvas

The last part of what we consider to be in the Discovery Phase is filling the Incentive Mechanisms Canvas. After successfully identifying value flows in the previous stage, token engineers search for frictions to desired behaviors and point out the undesired behaviors. For example, friction to activity on an NFT marketplace might be respecting royalty fees by marketplace owners since it reduces value flowing to the seller.

source: https://www.canva.com/design/DAFDTNKsIJs/8Ky9EoJJI7p98qKLIu2XNw/view#7

Design Phase of Token Engineering Process

The second stage of the Token Engineering Process is the Design Phase in which you make use of high-level descriptions from the previous step to come up with a specific design of the project. This will include everything that can be usually found in crypto whitepapers (e.g. governance mechanisms, incentive mechanisms, token supply, etc). After finishing the design, token engineers should represent the whole value flow and transactional logic on detailed visual diagrams. These diagrams will be a basis for creating mathematical models in the Deployment Phase. 

Token Engineering Artonomous Design Diagram
Artonomous design diagram, source: Artonomous GitHub

Objective Function

Every crypto project has some objective. The objective can consist of many goals, such as decentralization or token price. The objective function is a mathematical function assigning weights to different factors that influence the main objective in the order of their importance. This function will be a reference for machine learning algorithms in the next steps. They will try to find quantitative parameters (e.g. network fees) that maximize the output of this function.
Modified Metcalfe’s Law can serve as an inspiration during that step. It’s a framework for valuing crypto projects, but we believe that after adjustments it can also be used in this context.

Deployment Phase of Token Engineering Process

The Deployment Phase is final, but also the most demanding step in the process. It involves the implementation of machine learning algorithms that test our assumptions and optimize quantitative parameters. Token Engineering draws from Nassim Taleb’s concept of Antifragility and extensively uses feedback loops to make a system that gains from arising shocks.

Agent-based Modelling 

In agent-based modeling, we describe a set of behaviors and goals displayed by each agent participating in the system (this is why previous steps focused so much on describing stakeholders). Each agent is controlled by an autonomous AI and continuously optimizes his strategy. He learns from his experience and can mimic the behavior of other agents if he finds it effective (Reinforced Learning). This approach allows for mimicking real users, who adapt their strategies with time. An example adaptive agent would be a cryptocurrency trader, who changes his trading strategy in response to experiencing a loss of money.

Monte Carlo Simulations

Token Engineers use the Monte Carlo method to simulate the consequences of various possible interactions while taking into account the probability of their occurrence. By running a large number of simulations it’s possible to stress-test the project in multiple scenarios and identify emergent risks.

Testnet Deployment

If possible, it's highly beneficial for projects to extend the testing phase even further by letting real users use the network. Idea is the same as in agent-based testing - continuous optimization based on provided metrics. Furthermore, in case the project considers airdropping its tokens, giving them to early users is a great strategy. Even though part of the activity will be disingenuine and airdrop-oriented, such strategy still works better than most.

Time Duration

Token engineering process may take from as little as 2 weeks to as much as 5 months. It depends on the project category (Layer 1 protocol will require more time, than a simple DApp), and security requirements. For example, a bank issuing its digital token will have a very low risk tolerance.

Required Skills for Token Engineering

Token engineering is a multidisciplinary field and requires a great amount of specialized knowledge. Key knowledge areas are:

  • Systems Engineering
  • Machine Learning
  • Market Research
  • Capital Markets
  • Current trends in Web3
  • Blockchain Engineering
  • Statistics

Summary

The token engineering process consists of 3 steps: Discovery Phase, Design Phase, and Deployment Phase. It’s utilized mostly by established blockchain projects, and financial institutions like the International Monetary Fund. Even though it’s a very resource-consuming process, we believe it’s worth it. Projects that went through scrupulous design and testing before launch are much more likely to receive VC funding and be in the 10% of crypto projects that survive the bear market. Going through that process also has a symbolic meaning - it shows that the project is long-term oriented.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.

FAQ

What does token engineering process look like?

  • Token engineering process is conducted in a 3-step methodical fashion. This includes Discovery Phase, Design Phase, and Deployment Phase. Each of these stages should be tailored to the specific needs of a project.

Is token engineering meant only for big projects?

  • We recommend that even small projects go through a simplified design and optimization process. This increases community's trust and makes sure that the tokenomics doesn't have any obvious flaws.

How long does the token engineering process take?

  • It depends on the project and may range from 2 weeks to 5 months.

What is Berachain? 🐻 ⛓️ + Proof-of-Liquidity Explained

Karolina

18 Mar 2024
What is Berachain? 🐻 ⛓️ + Proof-of-Liquidity Explained

Enter Berachain: a high-performance, EVM-compatible blockchain that is set to redefine the landscape of decentralized applications (dApps) and blockchain services. Built on the innovative Proof-of-Liquidity consensus and leveraging the robust Polaris framework alongside the CometBFT consensus engine, Berachain is poised to offer an unprecedented blend of efficiency, security, and user-centric benefits. Let's dive into what makes it a groundbreaking development in the blockchain ecosystem.

What is Berachain?

Overview

Berachain is an EVM-compatible Layer 1 (L1) blockchain that stands out through its adoption of the Proof-of-Liquidity (PoL) consensus mechanism. Designed to address the critical challenges faced by decentralized networks. It introduces a cutting-edge approach to blockchain governance and operations.

Key Features

  • High-performance Capabilities. Berachain is engineered for speed and scalability, catering to the growing demand for efficient blockchain solutions.
  • EVM Compatibility. It supports all Ethereum tooling, operations, and smart contract languages, making it a seamless transition for developers and projects from the Ethereum ecosystem.
  • Proof-of-Liquidity.This novel consensus mechanism focuses on building liquidity, decentralizing stake, and aligning the interests of validators and protocol developers.

MUST READ: Docs

EVM-Compatible vs EVM-Equivalent

EVM-Compatible

EVM compatibility means a blockchain can interact with Ethereum's ecosystem to some extent. It can interact supporting its smart contracts and tools but not replicating the entire EVM environment.

EVM-Equivalent

An EVM-equivalent blockchain, on the other hand, aims to fully replicate Ethereum's environment. It ensures complete compatibility and a smooth transition for developers and users alike.

Berachain's Position

Berachain can be considered an "EVM-equivalent-plus" blockchain. It supports all Ethereum operations, tooling, and additional functionalities that optimize for its unique Proof-of-Liquidity and abstracted use cases.

Berachain Modular First Approach

At the heart of Berachain's development philosophy is the Polaris EVM framework. It's a testament to the blockchain's commitment to modularity and flexibility. This approach allows for the easy separation of the EVM runtime layer, ensuring that Berachain can adapt and evolve without compromising on performance or security.

Proof Of Liquidity Overview

High-Level Model Objectives

  • Systemically Build Liquidity. By enhancing trading efficiency, price stability, and network growth, Berachain aims to foster a thriving ecosystem of decentralized applications.
  • Solve Stake Centralization. The PoL consensus works to distribute stake more evenly across the network, preventing monopolization and ensuring a decentralized, secure blockchain.
  • Align Protocols and Validators. Berachain encourages a symbiotic relationship between validators and the broader protocol ecosystem.

Proof-of-Liquidity vs Proof-of-Stake

Unlike traditional Proof of Stake (PoS), which often leads to stake centralization and reduced liquidity, Proof of Liquidity (PoL) introduces mechanisms to incentivize liquidity provision and ensure a fairer, more decentralized network. Berachain separates the governance token (BGT) from the chain's gas token (BERA) and incentives liquidity through BEX pools. Berachain's PoL aims to overcome the limitations of PoS, fostering a more secure and user-centric blockchain.

Berachain EVM and Modular Approach

Polaris EVM

Polaris EVM is the cornerstone of Berachain's EVM compatibility, offering developers an enhanced environment for smart contract execution that includes stateful precompiles and custom modules. This framework ensures that Berachain not only meets but exceeds the capabilities of the traditional Ethereum Virtual Machine.

CometBFT

The CometBFT consensus engine underpins Berachain's network, providing a secure and efficient mechanism for transaction verification and block production. By leveraging the principles of Byzantine fault tolerance (BFT), CometBFT ensures the integrity and resilience of the Berachain blockchain.

Conclusion

Berachain represents a significant leap forward in blockchain technology, combining the best of Ethereum's ecosystem with innovative consensus mechanisms and a modular development approach. As the blockchain landscape continues to evolve, Berachain stands out as a promising platform for developers, users, and validators alike, offering a scalable, efficient, and inclusive environment for decentralized applications and services.

Resources

For those interested in exploring further, a wealth of resources is available, including the Berachain documentation, GitHub repository, and community forums. It offers a compelling vision for the future of blockchain technology, marked by efficiency, security, and community-driven innovation.

FAQ

How is Berachain different?

  • It integrates Proof-of-Liquidity to address stake centralization and enhance liquidity, setting it apart from other blockchains.

Is Berachain EVM-compatible?

  • Yes, it supports Ethereum's tooling and smart contract languages, facilitating easy migration of dApps.

Can it handle high transaction volumes?

  • Yes, thanks to the Polaris framework and CometBFT consensus engine, it's built for scalability and high throughput.