Precious metals tokenization – this year greatest game-changer

Maciej Zieliński

28 Jan 2021
Precious metals tokenization – this year greatest game-changer

Last year, the price of gold broke through historic highs pulling in increased investment in other precious metals as well. Given the very good forecasts for the current year, we discuss why it is time to tokenize them.

Both gold and silver have been popular investments for thousands of years. Currently, precious metals are finding more and more industrial and investment applications, while the scale of their extraction still remains relatively limited. As their value increases, so does the degree and dynamics of Blockchain technology development. There are many indications that tokenization of precious metals may become one of its most significant applications.

Tokenization of precious metals - why it makes sense?

Precious metal-backed tokens can be traded continuously and globally, making them far more liquid than virtually any other form of precious metal ownership. They are also easier to store securely and do not carry the risk of theft associated with physical storage of the metal by the purchaser.

Because tokens are created using blockchain technology they are traded in a decentralised manner. This means that no person or institution can influence the process of buying and selling them if it does not comply with the established rules. Furthermore, the nature of decentralised markets forces the entity issuing the tokens to follow best practices, such as transparent auditing and safekeeping of the assets backing the tokens. The buyer of tokens therefore has virtually direct access to the assets held without the need for physical storage.

Tokenization of precious metals = security  

It is security that is the greatest asset of this decentralisation. At present, the precious metals market is not free of scams and uncertainties. The recent case of JP Morgan, which is under criminal investigation for manipulating silver prices, is a clear illustration of this. The decentralisation of the precious metals market is capable of providing a new level of transparency in transactions. Yet it is the lack of this that is responsible for most of the theft, fraud and manipulation associated with traditional markets. 

Silver tokenization 

Silver Cryptocoin is a Danish company that wanted to allow investors a more convenient way to buy and store silver. To this end, it relied on tokenization. Instead of buying physical silver, an investor can buy its digital equivalent on the Ethereum blockchain. The resulting ERC20 token is fully backed by bullion safely stored by the company. The investor can conveniently sell their tokens on cryptocurrency exchanges or directly on a peer-to-peer basis.

It was Nextrope that created a dedicated token purchasing platform for the company, which it integrated with the Ethereum blockchain. If you want to know more about the whole project, check out our portfolio.

Certainty of origin 

With the slow depletion of existing deposits, public interest in the ethics of extraction methods is growing. In the 21st century, the clarity of the origin of precious metals has become almost as important as their price. At the same time, in the case of gold, for example, the share of illegal and informal mining has virtually only increased since 2000.

In addition to creating a new investment mechanism, blockchain is able to completely modernise the precious metals supply chain. The origin of precious metals can be made fully transparent by using decentralised certification technologies such as IDWorksand securing all relevant information through a private blockchain (e.g. Corda's R3 network). 

In short, blockchain technology allows for the unalterable recording and independent verification of data relating to each stage of the supply chain of a specific raw material. As a result, it becomes possible to precisely trace its path and detect any attempts at manipulation or fraud. 

Gold price chart from May 2016 to today

Tokenization of precious metals - future prospects

Of course, many commodities benefit from tokenization, but it is perhaps the tokenisation of those with the highest value that has the most advantages. Precious metals are one of the best assets for protecting capital from inflation and market fluctuations. And with tokenization, trading them becomes simpler than ever.  Therefore, in addition to the existing tokens secured by gold or silver, those using other precious metals should soon appear. What will be next? Platinum? Palladium? The possibilities are endless...

All indications are that precious metal tokenization will be one of the hottest fintech trends in 2021!

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Master UI Component Creation with AI: The Ultimate Guide for Developers

Gracjan Prusik

24 Mar 2025
Master UI Component Creation with AI: The Ultimate Guide for Developers

Introduction

Modern frontend development is evolving rapidly, and creating UI components with AI tools is helping developers save time while enhancing interface quality. With AI, we can not only speed up the creation of UI components but also improve their quality, optimize styles, and ensure better accessibility.

This article explores how creating UI components with AI is transforming frontend development by saving time and improving workflows. Specifically, we will discuss:

  • Generating components from images,
  • AI for style analysis and optimization,
  • Automatic style conversion and code migration,
  • AI in generating UI animations.

Creating UI Components with AI from Images

One of the interesting applications of AI in frontend development is the ability to generate components from an image. AI can recognize the structure of the interface and generate HTML/CSS or JSX code that matches the provided image. One of the most popular tools for UI creation is Lovable.

For testing, let's see how the tool performs in creating a simple contact form from the page you are currently on, which is Nextrope.

Query:

"Recreate the image I've sent you in Next.js using CSS."

Sample image used in the query:

The result received:

Tworzenie komponentów UI - Wygenerowany widok

Lovable did an excellent job transforming the image into code. The view is fully responsive. It’s important to remember that the more precise the request, the better the AI will replicate the expected view. However, even with a simple command, the tool performed surprisingly well.

Of course, AI has its limitations. It still makes quite a few mistakes. The generated code still requires review and fixes from the developer, but in some cases, the entire process is significantly sped up—correcting the code often takes less time than creating the component from scratch.

Optimizing UI Components with AI Tools for Style Improvements

This problem of inaccurate code reproduction by AI can be partially addressed by using it to analyze and improve styles. Tools like ChatGPT, DeepSeek and Claude are capable of not only generating code but also diagnosing CSS errors and suggesting why a particular style might not be working as expected.

Simple example: Why is the div not centered?

Query: "Why is this div not centered?"

AI analyzes the code and provides the following response:

Problem: The parent container does not have a defined width or display: flex.
Solution: Add the appropriate styles to the parent container.

.parent {
  display: flex;
  justify-content: center;
  align-items: center;
  width: 100vw;
  height: 100vh;
}

AI for Automatic Style Conversion and Code Migration in UI Components

AI can assist with style conversion between different technologies, such as transferring code from traditional CSS to Styled Components or Tailwind CSS.

Let's assume we have a style written in traditional CSS:

.button {
  background-color: blue;
  color: white;
  padding: 10px 20px;
  border-radius: 5px;
  transition: background-color 0.3s ease;
}

.button:hover {
  background-color: darkblue;
}

We can use AI for automatic conversion to Styled Components:

import styled from "styled-components";

const Button = styled.button`
  background-color: blue;
  color: white;
  padding: 10px 20px;
  border-radius: 5px;
  transition: background-color 0.3s ease;

  &:hover {
    background-color: darkblue;
  }
`;

export default Button;

AI can also assist in migrating code between frameworks, such as from React to Vue or from CSS to Tailwind.

This makes style migration easier and faster.

How AI Enhances UI Animation Creation

Animations are crucial for enhancing user experience in interfaces, but they are not always provided in the project specification. In such cases, developers have to come up with how the animations should look, which can be time-consuming and require significant creativity. AI, in this context, becomes helpful because it can automatically generate CSS animations or animations using libraries like Framer Motion, saving both time and effort.

Example: Automatically Generated Button Animation

Suppose we need to add a subtle scaling animation to a button but don't have a ready-made animation design. Instead of creating it from scratch, AI can generate the code that meets our needs.

Code generated by AI:

import { motion } from "framer-motion";

const AnimatedButton = () => (
  <motion.button
    whileHover={{ scale: 1.1 }}
    whileTap={{ scale: 0.9 }}
    className="bg-blue-500 text-white px-4 py-2 rounded-lg"
  >
    Press me
  </motion.button>
);

In this way, AI accelerates the animation creation process, providing developers with a simple and quick option to achieve the desired effect without the need to manually design animations from scratch.

Summary

AI significantly accelerates the creation of UI components. We can generate ready-made components from images, optimize styles, transform code between technologies, and create animations in just a few seconds. Tools like ChatGPT, DeepSeek, Claude and Lovable are a huge help for frontend developers, enabling faster and more efficient work.

In the next part of the series, we will take a look at:

If you want to learn more about how AI is impacting the entire automation of frontend processes and changing the role of developers, check out our blog article: AI in Frontend Automation – How It's Changing the Developer's Job?

Follow us to stay updated!

AI in Real Estate: How Does It Support the Housing Market?

Miłosz Mach

18 Mar 2025
AI in Real Estate: How Does It Support the Housing Market?

The digital transformation is reshaping numerous sectors of the economy, and real estate is no exception. By 2025, AI will no longer be a mere gadget but a powerful tool that facilitates customer interactions, streamlines decision-making processes, and optimizes sales operations. Simultaneously, blockchain technology ensures security, transparency, and scalability in transactions. With this article, we launch a series of publications exploring AI in business, focusing today on the application of artificial intelligence within the real estate industry.

AI vs. Tradition: Key Implementations of AI in Real Estate

Designing, selling, and managing properties—traditional methods are increasingly giving way to data-driven decision-making.

Breakthroughs in Customer Service

AI-powered chatbots and virtual assistants are revolutionizing how companies interact with their customers. These tools handle hundreds of inquiries simultaneously, personalize offers, and guide clients through the purchasing process. Implementing AI agents can lead to higher-quality leads for developers and automate responses to most standard customer queries. However, technical challenges in deploying such systems include:

  • Integration with existing real estate databases: Chatbots must have access to up-to-date listings, prices, and availability.
  • Personalization of communication: Systems must adapt their interactions to individual customer needs.
  • Management of industry-specific knowledge: Chatbots require specialized expertise about local real estate markets.

Advanced Data Analysis

Cognitive AI systems utilize deep learning to analyze complex relationships within the real estate market, such as macroeconomic trends, local zoning plans, and user behavior on social media platforms. Deploying such solutions necessitates:

  • Collecting high-quality historical data.
  • Building infrastructure for real-time data processing.
  • Developing appropriate machine learning models.
  • Continuously monitoring and updating models based on new data.

Intelligent Design

Generative artificial intelligence is revolutionizing architectural design. These advanced algorithms can produce dozens of building design variants that account for site constraints, legal requirements, energy efficiency considerations, and aesthetic preferences.

Optimizing Building Energy Efficiency

Smart building management systems (BMS) leverage AI to optimize energy consumption while maintaining resident comfort. Reinforcement learning algorithms analyze data from temperature, humidity, and air quality sensors to adjust heating, cooling, and ventilation parameters effectively.

Integration of AI with Blockchain in Real Estate

The convergence of AI with blockchain technology opens up new possibilities for the real estate sector. Blockchain is a distributed database where information is stored in immutable "blocks." It ensures transaction security and data transparency while AI analyzes these data points to derive actionable insights. In practice, this means that ownership histories, all transactions, and property modifications are recorded in an unalterable format, with AI aiding in interpreting these records and informing decision-making processes.

AI has the potential to bring significant value to the real estate sector—estimated between $110 billion and $180 billion by experts at McKinsey & Company.

Key development directions over the coming years include:

  • Autonomous negotiation systems: AI agents equipped with game theory strategies capable of conducting complex negotiations.
  • AI in urban planning: Algorithms designed to plan city development and optimize spatial allocation.
  • Property tokenization: Leveraging blockchain technology to divide properties into digital tokens that enable fractional investment opportunities.

Conclusion

For companies today, the question is no longer "if" but "how" to implement AI to maximize benefits and enhance competitiveness. A strategic approach begins with identifying specific business challenges followed by selecting appropriate technologies.

What values could AI potentially bring to your organization?
  • Reduction of operational costs through automation
  • Enhanced customer experience and shorter transaction times
  • Increased accuracy in forecasts and valuations, minimizing business risks
Nextrope Logo

Want to implement AI in your real estate business?

Nextrope specializes in implementing AI and blockchain solutions tailored to specific business needs. Our expertise allows us to:

  • Create intelligent chatbots that serve customers 24/7
  • Implement analytical systems for property valuation
  • Build secure blockchain solutions for real estate transactions
Schedule a free consultation

Or check out other articles from the "AI in Business" series