Aethir Tokenomics – Case Study

Kajetan Olas

22 Nov 2024
Aethir Tokenomics – Case Study

Authors of the contents are not affiliated to the reviewed project in any way and none of the information presented should be taken as financial advice.

In this article we analyze tokenomics of Aethir - a project providing on-demand cloud compute resources for the AI, Gaming, and virtualized compute sectors.
Aethir aims to aggregate enterprise-grade GPUs from multiple providers into a DePIN (Decentralized Physical Infrastructure Network). Its competitive edge comes from utlizing the GPUs for very specific use-cases, such as low-latency rendering for online games.
Due to decentralized nature of its infrastructure Aethir can meet the demands of online-gaming in any region. This is especially important for some gamer-abundant regions in Asia with underdeveloped cloud infrastructure that causes high latency ("lags").
We will analyze Aethir's tokenomics, give our opinion on what was done well, and provide specific recommendations on how to improve it.

Evaluation Summary

Aethir Tokenomics Structure

The total supply of ATH tokens is capped at 42 billion ATH. This fixed cap provides a predictable supply environment, and the complete emissions schedule is listed here. As of November 2024 there are approximately 5.2 Billion ATH in circulation. In a year from now (November 2025), the circulating supply will almost triple, and will amount to approximately 15 Billion ATH. By November 2028, today's circulating supply will be diluted by around 86%.

From an investor standpoint the rational decision would be to stake their tokens and hope for rewards that will balance the inflation. Currently the estimated APR for 3-year staking is 195% and for 4-year staking APR is 261%. The rewards are paid out weekly. Furthermore, stakers can expect to get additional rewards from partnered AI projects.

Staking Incentives

Rewards are calculated based on the staking duration and staked amount. These factors are equally important and they linearly influence weekly rewards. This means that someone who stakes 100 ATH for 2 weeks will have the same weekly rewards as someone who stakes 200 ATH for 1 week. This mechanism greatly emphasizes long-term holding. That's because holding a token makes sense only if you go for long-term staking. E.g. a whale staking $200k with 1 week lockup. will have the same weekly rewards as person staking $1k with 4 year lockup. Furthermore the ATH staking rewards are fixed and divided among stakers. Therefore Increase of user base is likely to come with decrease in rewards.
We believe the main weak-point of Aethirs staking is the lack of equivalency between rewards paid out to the users and value generated for the protocol as a result of staking.

Token Distribution

The token distribution of $ATH is well designed and comes with long vesting time-frames. 18-month cliff and 36-moths subsequent linear vesting is applied to team's allocation. This is higher than industry standard and is a sign of long-term commitment.

  • Checkers and Compute Providers: 50%
  • Ecosystem: 15%
  • Team: 12.5%
  • Investors: 11.5%
  • Airdrop: 6%
  • Advisors: 5%

Aethir's airdrop is divided into 3 phases to ensure that only loyal users get rewarded. This mechanism is very-well thought and we rate it highly. It fosters high community engagement within the first months of the project and sets the ground for potentially giving more-control to the DAO.

Governance and Community-Led Development

Aethir’s governance model promotes community-led decision-making in a very practical way. Instead of rushing with creation of a DAO for PR and marketing purposes Aethir is trying to make it the right way. They support projects building on their infrastructure and regularly share updates with their community in the most professional manner.

We believe Aethir would benefit from implementing reputation boosted voting. An example of such system is described here. The core assumption is to abandon the simplistic: 1 token = 1 vote and go towards: Votes = tokens * reputation_based_multiplication_factor.

In the attached example, reputation_based_multiplication_factor rises exponentially with the number of standard deviations above norm, with regard to user's rating. For compute compute providers at Aethir, user's rating could be replaced by provider's uptime.

Perspectives for the future

While it's important to analyze aspects such as supply-side tokenomics, or governance, we must keep in mind that 95% of project's success depends on demand-side. In this regard the outlook for Aethir may be very bright. The project declares $36M annual reccuring revenue. Revenue like this is very rare in the web3 space. Many projects are not able to generate any revenue after succesfull ICO event, due to lack fo product-market-fit.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Master UI Component Creation with AI: The Ultimate Guide for Developers

Gracjan Prusik

24 Mar 2025
Master UI Component Creation with AI: The Ultimate Guide for Developers

Introduction

Modern frontend development is evolving rapidly, and creating UI components with AI tools is helping developers save time while enhancing interface quality. With AI, we can not only speed up the creation of UI components but also improve their quality, optimize styles, and ensure better accessibility.

This article explores how creating UI components with AI is transforming frontend development by saving time and improving workflows. Specifically, we will discuss:

  • Generating components from images,
  • AI for style analysis and optimization,
  • Automatic style conversion and code migration,
  • AI in generating UI animations.

Creating UI Components with AI from Images

One of the interesting applications of AI in frontend development is the ability to generate components from an image. AI can recognize the structure of the interface and generate HTML/CSS or JSX code that matches the provided image. One of the most popular tools for UI creation is Lovable.

For testing, let's see how the tool performs in creating a simple contact form from the page you are currently on, which is Nextrope.

Query:

"Recreate the image I've sent you in Next.js using CSS."

Sample image used in the query:

The result received:

Tworzenie komponentów UI - Wygenerowany widok

Lovable did an excellent job transforming the image into code. The view is fully responsive. It’s important to remember that the more precise the request, the better the AI will replicate the expected view. However, even with a simple command, the tool performed surprisingly well.

Of course, AI has its limitations. It still makes quite a few mistakes. The generated code still requires review and fixes from the developer, but in some cases, the entire process is significantly sped up—correcting the code often takes less time than creating the component from scratch.

Optimizing UI Components with AI Tools for Style Improvements

This problem of inaccurate code reproduction by AI can be partially addressed by using it to analyze and improve styles. Tools like ChatGPT, DeepSeek and Claude are capable of not only generating code but also diagnosing CSS errors and suggesting why a particular style might not be working as expected.

Simple example: Why is the div not centered?

Query: "Why is this div not centered?"

AI analyzes the code and provides the following response:

Problem: The parent container does not have a defined width or display: flex.
Solution: Add the appropriate styles to the parent container.

.parent {
  display: flex;
  justify-content: center;
  align-items: center;
  width: 100vw;
  height: 100vh;
}

AI for Automatic Style Conversion and Code Migration in UI Components

AI can assist with style conversion between different technologies, such as transferring code from traditional CSS to Styled Components or Tailwind CSS.

Let's assume we have a style written in traditional CSS:

.button {
  background-color: blue;
  color: white;
  padding: 10px 20px;
  border-radius: 5px;
  transition: background-color 0.3s ease;
}

.button:hover {
  background-color: darkblue;
}

We can use AI for automatic conversion to Styled Components:

import styled from "styled-components";

const Button = styled.button`
  background-color: blue;
  color: white;
  padding: 10px 20px;
  border-radius: 5px;
  transition: background-color 0.3s ease;

  &:hover {
    background-color: darkblue;
  }
`;

export default Button;

AI can also assist in migrating code between frameworks, such as from React to Vue or from CSS to Tailwind.

This makes style migration easier and faster.

How AI Enhances UI Animation Creation

Animations are crucial for enhancing user experience in interfaces, but they are not always provided in the project specification. In such cases, developers have to come up with how the animations should look, which can be time-consuming and require significant creativity. AI, in this context, becomes helpful because it can automatically generate CSS animations or animations using libraries like Framer Motion, saving both time and effort.

Example: Automatically Generated Button Animation

Suppose we need to add a subtle scaling animation to a button but don't have a ready-made animation design. Instead of creating it from scratch, AI can generate the code that meets our needs.

Code generated by AI:

import { motion } from "framer-motion";

const AnimatedButton = () => (
  <motion.button
    whileHover={{ scale: 1.1 }}
    whileTap={{ scale: 0.9 }}
    className="bg-blue-500 text-white px-4 py-2 rounded-lg"
  >
    Press me
  </motion.button>
);

In this way, AI accelerates the animation creation process, providing developers with a simple and quick option to achieve the desired effect without the need to manually design animations from scratch.

Summary

AI significantly accelerates the creation of UI components. We can generate ready-made components from images, optimize styles, transform code between technologies, and create animations in just a few seconds. Tools like ChatGPT, DeepSeek, Claude and Lovable are a huge help for frontend developers, enabling faster and more efficient work.

In the next part of the series, we will take a look at:

If you want to learn more about how AI is impacting the entire automation of frontend processes and changing the role of developers, check out our blog article: AI in Frontend Automation – How It's Changing the Developer's Job?

Follow us to stay updated!

AI in Real Estate: How Does It Support the Housing Market?

Miłosz Mach

18 Mar 2025
AI in Real Estate: How Does It Support the Housing Market?

The digital transformation is reshaping numerous sectors of the economy, and real estate is no exception. By 2025, AI will no longer be a mere gadget but a powerful tool that facilitates customer interactions, streamlines decision-making processes, and optimizes sales operations. Simultaneously, blockchain technology ensures security, transparency, and scalability in transactions. With this article, we launch a series of publications exploring AI in business, focusing today on the application of artificial intelligence within the real estate industry.

AI vs. Tradition: Key Implementations of AI in Real Estate

Designing, selling, and managing properties—traditional methods are increasingly giving way to data-driven decision-making.

Breakthroughs in Customer Service

AI-powered chatbots and virtual assistants are revolutionizing how companies interact with their customers. These tools handle hundreds of inquiries simultaneously, personalize offers, and guide clients through the purchasing process. Implementing AI agents can lead to higher-quality leads for developers and automate responses to most standard customer queries. However, technical challenges in deploying such systems include:

  • Integration with existing real estate databases: Chatbots must have access to up-to-date listings, prices, and availability.
  • Personalization of communication: Systems must adapt their interactions to individual customer needs.
  • Management of industry-specific knowledge: Chatbots require specialized expertise about local real estate markets.

Advanced Data Analysis

Cognitive AI systems utilize deep learning to analyze complex relationships within the real estate market, such as macroeconomic trends, local zoning plans, and user behavior on social media platforms. Deploying such solutions necessitates:

  • Collecting high-quality historical data.
  • Building infrastructure for real-time data processing.
  • Developing appropriate machine learning models.
  • Continuously monitoring and updating models based on new data.

Intelligent Design

Generative artificial intelligence is revolutionizing architectural design. These advanced algorithms can produce dozens of building design variants that account for site constraints, legal requirements, energy efficiency considerations, and aesthetic preferences.

Optimizing Building Energy Efficiency

Smart building management systems (BMS) leverage AI to optimize energy consumption while maintaining resident comfort. Reinforcement learning algorithms analyze data from temperature, humidity, and air quality sensors to adjust heating, cooling, and ventilation parameters effectively.

Integration of AI with Blockchain in Real Estate

The convergence of AI with blockchain technology opens up new possibilities for the real estate sector. Blockchain is a distributed database where information is stored in immutable "blocks." It ensures transaction security and data transparency while AI analyzes these data points to derive actionable insights. In practice, this means that ownership histories, all transactions, and property modifications are recorded in an unalterable format, with AI aiding in interpreting these records and informing decision-making processes.

AI has the potential to bring significant value to the real estate sector—estimated between $110 billion and $180 billion by experts at McKinsey & Company.

Key development directions over the coming years include:

  • Autonomous negotiation systems: AI agents equipped with game theory strategies capable of conducting complex negotiations.
  • AI in urban planning: Algorithms designed to plan city development and optimize spatial allocation.
  • Property tokenization: Leveraging blockchain technology to divide properties into digital tokens that enable fractional investment opportunities.

Conclusion

For companies today, the question is no longer "if" but "how" to implement AI to maximize benefits and enhance competitiveness. A strategic approach begins with identifying specific business challenges followed by selecting appropriate technologies.

What values could AI potentially bring to your organization?
  • Reduction of operational costs through automation
  • Enhanced customer experience and shorter transaction times
  • Increased accuracy in forecasts and valuations, minimizing business risks
Nextrope Logo

Want to implement AI in your real estate business?

Nextrope specializes in implementing AI and blockchain solutions tailored to specific business needs. Our expertise allows us to:

  • Create intelligent chatbots that serve customers 24/7
  • Implement analytical systems for property valuation
  • Build secure blockchain solutions for real estate transactions
Schedule a free consultation

Or check out other articles from the "AI in Business" series