3 post-COVID-19 fintech trends you should know about

Iwo Hachulski

29 Jun 2020
3 post-COVID-19 fintech trends you should know about

It is no doubt that fintech has been gradually implementing successive stages of the revolution in the banking services sector. The main beneficiaries of this state of affairs are, apart from fintech itself, consumers. Traditional banking adopts various strategies regarding the existing status quo, some banks, including Santander, are constantly investing heavily in the most promising fintech startups in order to then implement their solutions for their customers. Others - try to create their own unique products, which are then implemented by other players in the market. One of the best examples here is Bank PKO BP and the contactless payment system BLIK developed by the bank's IT department. The constantly ongoing time of the epidemic has changed many behaviors and habits. What mark has COVID-19 left on the modern financial services sector, a popular fintech? What prospects should we expect from a full opening of economies in a global context?

Extraordinary times require extraordinary solutions

Revaluation of priorities - this is probably the simplest and most rational way to describe the changes introduced by the coronavirus in our lives. Sanitary restrictions have forced the financial sector, like many others, to a new opening - and a look into the future from a completely different perspective. The need for full mobility introduced along with the full compatibility of the solutions used became, within a few weeks, a determinant of the effectiveness of the adaptation of both traditional banking and the fintech giants. 

However, it would be unfair to put them next to each other in this context - mainly due to the fact that it was not so much an unimaginable challenge for fintech to move almost 100 percent of their business into the digital world. This state of affairs is primarily due to the fact that the vast majority (and very often 100%) of fintech services offered within the framework of retail banking, for example, are available only online. The vast majority of them have decided on such a business model from the very beginning - on the one hand, they have focused on reducing the costs of running branches together with minimizing fixed costs and, as a result, full mobility, and on the other hand, they have often closed themselves off to clients currently almost exclusively connected with traditional banking. However, such a strategy has brought the expected results. Fintechs, although also often forced to make cuts - among others, Revolut announced the introduction of restrictions in the cheapest plan offered to customers and numerous layoffs in the Polish branch of the company - usually did not have to face the complicated task of transferring several thousand employees into remote operation almost overnight. Thus, they were able to focus on introducing specific solutions offered to their clients instead of dealing with their internal problems in the first place. For example, Starling Bank launched the "combined card" function, which enables the transfer of a second, "back-up" debit card linked to the customer's account to someone who can spend on their behalf. A team of developers from Fronted, Credit Kudos and 11:FS created Covid Credit for the self-employed, allowing access to financial aid for the most vulnerable people who are not covered by government support. A significant role is also slowly being played by fintech software houses, which offer IT services using the latest Fintech solutions such as Blockchain or AI.

Mobility and security above all

Due to health restrictions and recommendations, the volume of both card and phone payments increased slightly, for instance, in India it was about 5%. According to many experts in banking and social psychology, such a trend may last longer. According to the Mordor Intelligence report "Mobile Payments Market - Growth, Trends, and Forecast" (2020-2025) The use of m-payments will continue to grow strongly with an annual cumulative growth rate of as much as 26.93%. In Central Europe, this is mainly due to the still very young banking system, often developed from scratch only in the 1990s. For this reason, many behaviors are not so deeply rooted in society, which is thus much more susceptible to all kinds of innovation.

Another element that is hard not to mention is budgeting apps, i.e. applications for planning and controlling the budget. Although their popularity in Poland and other Central European countries is not as impressive as in the United States, this may gradually change due to the inevitable economic crisis caused by the coronavirus pandemic. Full control over one's own budget due to the difficult social and economic situation will undoubtedly become one of the priorities - thus bringing the possibility of a structured review of one's own spending to the fore. The applications differ in many ways, so that everyone can find something for themselves. Mint automatically categorizes transactions from credit and debit cards connected to the system and tracks them against a budget that can be adjusted and adapted to user's needs. Goodbudget, on the other hand, is mainly dedicated to couples - it is possible to share and fully synchronize the budget with another person in both iOS and Android.

Tandem and natural competition

Despite all the turmoil, the post-pandemic outlook for the coming months seems stable, although not as promising as previously expected. According to Ron Shevlin, Managing Director of Fintech Research at Cornerstone Advisors, the era of fintech experimentation is slowly coming to an end. The indicators that will gain in importance are primarily the number of accounts funded and their percentage in relation to the total number of application downloads. In his opinion, in the case of mainly B2B-oriented fintechs, the crucial benchmarks will be more operational, such as improved speed, cycle time and lower costs.

Moreover, there is a large disparity within the banking sector environment itself. There is continued optimism among the largest fintechs. By February 2020, Revolut already had less than 11 million users. According to the owners' forecasts, the number of users is expected to reach 13.07 million by the end of June, and then increase by about 20%, to reach 16.45 million by December 2020. The second largest player, N26, has already exceeded 5 million users in January, thus maintaining almost exponential growth and significantly exceeding the company's forecasts.

The situation is different for traditional banks, whose financial situation has often deteriorated. According to analyses of the International Monetary Fund, in addition to the immediate challenges posed by the COVID-19 outbreak, the relentless period of low interest rates may put further pressure on bank profitability in the forthcoming years. This may be a cause for concern, mainly due to the fact that it is the constant development of both traditional and modern banking that may be the key to recover from the crisis. A unique banking tandem also guarantees a greater choice of available services for the customer, and thus more competition and increased innovation in the fight for each costumer. 

What is more, smaller fintechs also face considerable problems. According to the latest CB Insights report, the value of contracts signed by fintech in Q1 2020 decreased by as much as 35% compared to Q4 2019. Better-invested and profitable fintechs are in a much better position, especially in the context of depletion of investment funds and hence increased competition in the fight for any funds for further development. The problems of some may paradoxically become a pain for others, thus worsening the situation of the sector and, consequently, often of the entire economy. 

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Nextrope on Economic Forum 2024: Insights from the Event

Kajetan Olas

14 Sep 2024
Nextrope on Economic Forum 2024: Insights from the Event

The 33rd Economic Forum 2024, held in Karpacz, Poland, gathered leaders from across the globe to discuss the pressing economic and technological challenges. This year, the forum had a special focus on Artificial Intelligence (AI and Cybersecurity, bringing together leading experts and policymakers.

Nextrope was proud to participate in the Forum where we showcased our expertise and networked with leading minds in the AI and blockchain fields.

Economic Forum 2024: A Hub for Innovation and Collaboration

The Economic Forum in Karpacz is an annual event often referred to as the "Polish Davos," attracting over 6,000 participants, including heads of state, business leaders, academics, and experts. This year’s edition was held from September 3rd to 5th, 2024.

Key Highlights of the AI Forum and Cybersecurity Forum

The AI Forum and the VI Cybersecurity Forum were integral parts of the event, organized in collaboration with the Ministry of Digital Affairs and leading Polish universities, including:

  • Cracow University of Technology
  • University of Warsaw
  • Wrocław University of Technology
  • AGH University of Science and Technology
  • Poznań University of Technology

Objectives of the AI Forum

  • Promoting Education and Innovation: The forum aimed to foster education and spread knowledge about AI and solutions to enhance digital transformation in Poland and CEE..
  • Strengthening Digital Administration: The event supported the Ministry of Digital Affairs' mission to build and strengthen the digital administration of the Polish State, encouraging interdisciplinary dialogue on decentralized architecture.
  • High-Level Meetings: The forum featured closed meetings of digital ministers from across Europe, including a confirmed appearance by Volker Wissing, the German Minister for Digital Affairs.

Nextrope's Active Participation in the AI Forum

Nextrope's presence at the AI Forum was marked by our active engagement in various activities in the Cracow University of Technology and University of Warsaw zone. One of the discussion panels we enjoyed the most was "AI in education - threats and opportunities".

Our Key Activities

Networking with Leading AI and Cryptography Researchers.

Nextrope presented its contributions in the field of behavioral profilling in DeFi and established relationships with Cryptography Researchers from Cracow University of Technology and the brightest minds on Polish AI scene, coming from institutions such as Wroclaw University of Technology, but also from startups.

Panel Discussions and Workshops

Our team participated in several panel discussions, covering a variety of topics. Here are some of them

  • Polish Startup Scene.
  • State in the Blockchain Network
  • Artificial Intelligence - Threat or Opportunity for Healthcare?
  • Silicon Valley in Poland – Is it Possible?
  • Quantum Computing - How Is It Changing Our Lives?

Broadening Horizons

Besides tuning in to topics that strictly overlap with our professional expertise we decided to broaden our horizons and participated in panels about national security and cross-border cooperation.

Meeting with clients:

We had a pleasure to deepen relationships with our institutional clients and discuss plans for the future.

Networking with Experts in AI and Blockchain

A major highlight of the Economic Forum in Karpacz was the opportunity to network with experts from academia, industry, and government.

Collaborations with Academia:

We engaged with scholars from leading universities such as the Cracow University of Technology and the University of Warsaw. These interactions laid the groundwork for potential research collaborations and joint projects.

Building Strategic Partnerships:

Our team connected with industry leaders, exploring opportunities for partnerships in regard to building the future of education. We met many extremely smart, yet humble people interested in joining advisory board of one of our projects - HackZ.

Exchanging Knowledge with VCs and Policymakers:

We had fruitful discussions with policymakers and very knowledgable representatives of Venture Capital. The discussions revolved around blockchain and AI regulation, futuristic education methods and dillemas regarding digital transformation in companies. These exchanges provided us with very interesting insights as well as new friendships.

Looking Ahead: Nextrope's Future in AI and Blockchain

Nextrope's participation in the Economic Forum Karpacz 2024 has solidified our position as one of the leading, deep-tech software houses in CEE. By fostering connections with academia, industry experts, and policymakers, we are well-positioned to consult our clients on trends and regulatory needs as well as implementing cutting edge DeFi software.

What's Next for Nextrope?

Continuing Innovation:

We remain committed to developing cutting-edge software solutions and designing token economies that leverage the power of incentives and advanced cryptography.

Deepening Academic Collaborations:

The partnerships formed at the forum will help us stay at the forefront of technological advancements, particularly in AI and blockchain.

Expanding Our Global Reach:

The international connections made at the forum enable us to expand our influence both in CEE and outside of Europe. This reinforces Nextrope's status as a global leader in technology innovation.

If you're looking to create a robust blockchain system and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.

Monte Carlo Simulations in Tokenomics

Kajetan Olas

01 May 2024
Monte Carlo Simulations in Tokenomics

As the web3 field grows in complexity, traditional analytical tools often fall short in capturing the dynamics of digital markets. This is where Monte Carlo simulations come into play, offering a mathematical technique to model systems fraught with uncertainty.

Monte Carlo simulations employ random sampling to understand probable outcomes in processes that are too complex for straightforward analytic solutions. By simulating thousands, or even millions, of scenarios, Monte Carlo methods can provide insights into the likelihood of different outcomes, helping stakeholders make informed decisions under conditions of uncertainty.

In this article, we will explore the role of Monte Carlo simulations within the context of tokenomics.  illustrating how they are employed to forecast market dynamics, assess risk, and optimize strategies in the volatile realm of cryptocurrencies. By integrating this powerful tool, businesses and investors can enhance their analytical capabilities, paving the way for more resilient and adaptable economic models in the digital age.

Understanding Monte Carlo Simulations

The Monte Carlo method is an approach to solving problems that involve random sampling to understand probable outcomes. This technique was first developed in the 1940s by scientists working on the atomic bomb during the Manhattan Project. The method was designed to simplify the complex simulations of neutron diffusion, but it has since evolved to address a broad spectrum of problems across various fields including finance, engineering, and research.

Random Sampling and Statistical Experimentation

At the heart of Monte Carlo simulations is the concept of random sampling from a probability distribution to compute results. This method does not seek a singular precise answer but rather a probability distribution of possible outcomes. By performing a large number of trials with random variables, these simulations mimic the real-life fluctuations and uncertainties inherent in complex systems.

Role of Randomness and Probability Distributions in Simulations

Monte Carlo simulations leverage the power of probability distributions to model potential scenarios in processes where exact outcomes cannot be determined due to uncertainty. Each simulation iteration uses randomly generated values that follow a specific statistical distribution to model different outcomes. This method allows analysts to quantify and visualize the probability of different scenarios occurring.

The strength of Monte Carlo simulations lies in the insight they offer into potential risks. They allow modelers to see into the probabilistic "what-if" scenarios that more closely mimic real-world conditions.

Monte Carlo Simulations in Tokenomics

Monte Carlo simulations are instrumental tool for token engineers. They're so useful due to their ability to model emergent behaviors. Here are some key areas where these simulations are applied:

Pricing and Valuation of Tokens

Determining the value of a new token can be challenging due to the volatile nature of cryptocurrency markets. Monte Carlo simulations help by modeling various market scenarios and price fluctuations over time, allowing analysts to estimate a token's potential future value under different conditions.

Assessing Market Dynamics and Investor Behavior

Cryptocurrency markets are influenced by a myriad of factors including regulatory changes, technological advancements, and shifts in investor sentiment. Monte Carlo methods allow researchers to simulate these variables in an integrated environment to see how they might impact token economics, from overall market cap fluctuations to liquidity concerns.

Assesing Possible Risks

By running a large number of simulations it’s possible to stress-test the project in multiple scenarios and identify emergent risks. This is perhaps the most important function of Monte Carlo Process, since these risks can’t be assessed any other way.

Source: How to use Monte Carlo simulation for reliability analysis?

Benefits of Using Monte Carlo Simulations

By generating a range of possible outcomes and their probabilities, Monte Carlo simulations help decision-makers in the cryptocurrency space anticipate potential futures and make informed strategic choices. This capability is invaluable for planning token launches, managing supply mechanisms, and designing marketing strategies to optimize market penetration.

Using Monte Carlo simulations, stakeholders in the tokenomics field can not only understand and mitigate risks but also explore the potential impact of different strategic decisions. This predictive power supports more robust economic models and can lead to more stable and successful token launches. 

Implementing Monte Carlo Simulations

Several tools and software packages can facilitate the implementation of Monte Carlo simulations in tokenomics. One of the most notable is cadCAD, a Python library that provides a flexible and powerful environment for simulating complex systems. 

Overview of cadCAD configuration Components

To better understand how Monte Carlo simulations work in practice, let’s take a look at the cadCAD code snippet:

sim_config = {

    'T': range(200),  # number of timesteps

    'N': 3,           # number of Monte Carlo runs

    'M': params       # model parameters

}

Explanation of Simulation Configuration Components

T: Number of Time Steps

  • Definition: The 'T' parameter in CadCAD configurations specifies the number of time steps the simulation should execute. Each time step represents one iteration of the model, during which the system is updated. That update is based on various rules defined by token engineers in other parts of the code. For example: we might assume that one iteration = one day, and define data-based functions that predict token demand on that day.

N: Number of Monte Carlo Runs

  • Definition: The 'N' parameter sets the number of Monte Carlo runs. Each run represents a complete execution of the simulation from start to finish, using potentially different random seeds for each run. This is essential for capturing variability and understanding the distribution of possible outcomes. For example, we can acknowledge that token’s price will be correlated with the broad cryptocurrency market, which acts somewhat unpredictably.

M: Model Parameters

  • Definition: The 'M' key contains the model parameters, which are variables that influence system's behavior but do not change dynamically with each time step. These parameters can be constants or distributions that are used within the policy and update functions to model the external and internal factors affecting the system.

Importance of These Components

Together, these components define the skeleton of your Monte Carlo simulation in CadCAD. The combination of multiple time steps and Monte Carlo runs allows for a comprehensive exploration of the stochastic nature of the modeled system. By varying the number of timesteps (T) and runs (N), you can adjust the depth and breadth of the exploration, respectively. The parameters (M) provide the necessary context and ensure that each simulation is realistic.

Messy graph representing Monte Carlo simulation, source: Bitcoin Monte Carlo Simulation

Conclusion

Monte Carlo simulations represent a powerful analytical tool in the arsenal of token engineers. By leveraging the principles of statistics, these simulations provide deep insights into the complex dynamics of token-based systems. This method allows for a nuanced understanding of potential future scenarios and helps with making informed decisions.

We encourage all stakeholders in the blockchain and cryptocurrency space to consider implementing Monte Carlo simulations. The insights gained from such analytical techniques can lead to more effective and resilient economic models, paving the way for the sustainable growth and success of digital currencies.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.

FAQ

What is a Monte Carlo simulation in tokenomics context?

  • It's a mathematical method that uses random sampling to predict uncertain outcomes.

What are the benefits of using Monte Carlo simulations in tokenomics?

  • These simulations help foresee potential market scenarios, aiding in strategic planning and risk management for token launches.

Why are Monte Carlo simulations unique in cryptocurrency analysis?

  • They provide probabilistic outcomes rather than fixed predictions, effectively simulating real-world market variability and risk.