12 best remote working tools

Maciej Zieliński

16 Apr 2020
12 best remote working tools

Remote working has been growing in popularity for many years, but recent events have dramatically increased the need for effective tools to work from home. 

This type of work presents many challenges - the analysis carried out by Buffer shows that many remote workers have problems with disconnection, loneliness and communication. Other challenges include problems concentrating at home, working with people in other time zones and finding motivation. 

It is worth adding that in the Buffer report as much as 99% of the respondents stated that they would like to work remotely at least once during their career.

The tools we have chosen focus on solving not only the unique problems faced by teams permanently scattered around the country and the world, but also those that emerged in connection with the rapidly changing situation and forced many employees to switch to remote working.

Trello

A tool that will make it much easier to deal with many issues at once and avoid unnecessary doubles and work on the same topic by two employees. Main advantages: separation of tasks, setting statuses and importance for individual tabs, managing multiple issues at once. Similar to Trello is Monday - but goes one step further. While the previous project management tool fundamentally redesigned the concept of a to-do-list with boards, here we have a fully functional management platform for team leaders. The main advantages: tracking progress, file sharing, weekly task reviews, managing both projects and tasks, checklists and reports.

The main advantages: tracking progress, file sharing, weekly task reviews, managing both projects and tasks, checklists and reports.

Status Hero

Working remotely, it's extremely easy to fall into the trap of sending dozens of emails and messages daily with reports on tasks done, problems encountered on the road and the status of individual employees. This problem is solved by Status Hero.

The main advantages: setting up statuses with accessibility, catching time zones where employees are currently located, the ability to report, grouping or project management.

Microsoft Teams

Although Microsoft recorded some bandwidth problems at the beginning of last week, at the moment the program is back to normal. According to many, Teams is a much better tool for conversations and meetings than Skype - it works well even with a very large number of people.

The main advantages: conferences in the form of video, the ability to set statuses, efficient operation with many employees.

Slack

If it's not yet a commonly used tool on your team, it's definitely worth changing. Slack is an essential tool to facilitate communication in both smaller and very large teams - up to several hundred people.

The main advantages are: efficient communication, setting up accessible statuses, file transfer, voice and video chat, screen sharing.

Serene

"Multi-tasking is a myth. Single-tasking is super power." - Serene's application slogan actually says everything about its operation. It helps individual team members maximize productivity by focusing on one goal per day. Instead of sharing attention, it focuses it.

The main advantages: blocking sites and apps, smooth sessions (20 to 60 minutes), timers, scheduling of the day, music to help keep the focus.

Spark

Email filter that actually works. Automatically categorizes messages from multiple accounts and divides them according to importance. At the same time, it filters out the ones that are a waste of time.

Main advantages: scheduling of sending messages, reminders, assigning e-mail addresses to team members, intelligent inbox.

Take A Break

The problem with disconnecting from work is, according to Buffer, the biggest bane of remote workers. Take A Break, as the name suggests, helps you disconnect from your computer and take full advantage of the break from work.

Main advantages: configurable work and break periods, display of remaining work time and pre-break notifications, start at login.

Time Doctor

Although some corporations are able to make "control calls" to employees to see how they spend their time, the Time Doctor allows you to do this without wasting time on a phone call. The tool helps you keep track of employee productivity and what they do at work. It can also be used to check customer accounts.

The main advantages: keeping track of employee activity, use of the Internet and applications, monitoring performance, creating reports.

Zoom

Communicator, which in recent days has become one of the most popular in the world. It allows to organize video conferences of whole companies - it works even with hundreds of users.

Main advantages: desktop sharing, file transfer, efficient operation with a large number of people.

Tandem

"Virtual office for remote teams", as its creators write about the application. It allows not only to talk to other employees, but also to check what they do at the moment and fast connections with teammates.

Main advantages: compatibility with many applications, screen sharing, quick operation.

Around

Video chat software that cuts participants into floating circles. Thanks to that there is a lot of space left on the screen for other applications.

Main advantages: auto-zoom, mute background sounds.

Confluence

Combining Slack and Calendar into one tool that allows you to efficiently plan all tasks for your team. Sharing knowledge, goals and tasks is transparent and avoids unnecessary misunderstandings.

Main advantages: planning documents, employee blogs, free flow of information.

Remote working means many challenges, but most of them can be dealt with the right tools. Although they are currently experiencing a temporary siege due to the growing popularity of remote working, they may become a permanent feature of new everyday life in the future. What's more, most of them are worth reaching out to whether you work from home or in the office.

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

AI-Driven Frontend Automation: Elevating Developer Productivity to New Heights

Gracjan Prusik

11 Mar 2025
AI-Driven Frontend Automation: Elevating Developer Productivity to New Heights

AI Revolution in the Frontend Developer's Workshop

In today's world, programming without AI support means giving up a powerful tool that radically increases a developer's productivity and efficiency. For the modern developer, AI in frontend automation is not just a curiosity, but a key tool that enhances productivity. From automatically generating components, to refactoring, and testing – AI tools are fundamentally changing our daily work, allowing us to focus on the creative aspects of programming instead of the tedious task of writing repetitive code. In this article, I will show how these tools are most commonly used to work faster, smarter, and with greater satisfaction.

This post kicks off a series dedicated to the use of AI in frontend automation, where we will analyze and discuss specific tools, techniques, and practical use cases of AI that help developers in their everyday tasks.

AI in Frontend Automation – How It Helps with Code Refactoring

One of the most common uses of AI is improving code quality and finding errors. These tools can analyze code and suggest optimizations. As a result, we will be able to write code much faster and significantly reduce the risk of human error.

How AI Saves Us from Frustrating Bugs

Imagine this situation: you spend hours debugging an application, not understanding why data isn't being fetched. Everything seems correct, the syntax is fine, yet something isn't working. Often, the problem lies in small details that are hard to catch when reviewing the code.

Let’s take a look at an example:

function fetchData() {
    fetch("htts://jsonplaceholder.typicode.com/posts")
      .then((response) => response.json())
      .then((data) => console.log(data))
      .catch((error) => console.error(error));
}

At first glance, the code looks correct. However, upon running it, no data is retrieved. Why? There’s a typo in the URL – "htts" instead of "https." This is a classic example of an error that could cost a developer hours of frustrating debugging.

When we ask AI to refactor this code, not only will we receive a more readable version using newer patterns (async/await), but also – and most importantly – AI will automatically detect and fix the typo in the URL:

async function fetchPosts() {
    try {
      const response = await fetch(
        "https://jsonplaceholder.typicode.com/posts"
      );
      const data = await response.json();
      console.log(data);
    } catch (error) {
      console.error(error);
    }
}

How AI in Frontend Automation Speeds Up UI Creation

One of the most obvious applications of AI in frontend development is generating UI components. Tools like GitHub Copilot, ChatGPT, or Claude can generate component code based on a short description or an image provided to them.

With these tools, we can create complex user interfaces in just a few seconds. Generating a complete, functional UI component often takes less than a minute. Furthermore, the generated code is typically error-free, includes appropriate animations, and is fully responsive, adapting to different screen sizes. It is important to describe exactly what we expect.

Here’s a view generated by Claude after entering the request: “Based on the loaded data, display posts. The page should be responsive. The main colors are: #CCFF89, #151515, and #E4E4E4.”

Generated posts view

AI in Code Analysis and Understanding

AI can analyze existing code and help understand it, which is particularly useful in large, complex projects or code written by someone else.

Example: Generating a summary of a function's behavior

Let’s assume we have a function for processing user data, the workings of which we don’t understand at first glance. AI can analyze the code and generate a readable explanation:

function processUserData(users) {
  return users
    .filter(user => user.isActive) // Checks the `isActive` value for each user and keeps only the objects where `isActive` is true
    .map(user => ({ 
      id: user.id, // Retrieves the `id` value from each user object
      name: `${user.firstName} ${user.lastName}`, // Creates a new string by combining `firstName` and `lastName`
      email: user.email.toLowerCase(), // Converts the email address to lowercase
    }));
}

In this case, AI not only summarizes the code's functionality but also breaks down individual operations into easier-to-understand segments.

AI in Frontend Automation – Translations and Error Detection

Every frontend developer knows that programming isn’t just about creatively building interfaces—it also involves many repetitive, tedious tasks. One of these is implementing translations for multilingual applications (i18n). Adding translations for each key in JSON files and then verifying them can be time-consuming and error-prone.

However, AI can significantly speed up this process. Using ChatGPT, DeepSeek, or Claude allows for automatic generation of translations for the user interface, as well as detecting linguistic and stylistic errors.

Example:

We have a translation file in JSON format:

{
  "welcome_message": "Welcome to our application!",
  "logout_button": "Log out",
  "error_message": "Something went wrong. Please try again later."
}

AI can automatically generate its Polish version:

{
  "welcome_message": "Witaj w naszej aplikacji!",
  "logout_button": "Wyloguj się",
  "error_message": "Coś poszło nie tak. Spróbuj ponownie później."
}

Moreover, AI can detect spelling errors or inconsistencies in translations. For example, if one part of the application uses "Log out" and another says "Exit," AI can suggest unifying the terminology.

This type of automation not only saves time but also minimizes the risk of human errors. And this is just one example – AI also assists in generating documentation, writing tests, and optimizing performance, which we will discuss in upcoming articles.

Summary

Artificial intelligence is transforming the way frontend developers work daily. From generating components and refactoring code to detecting errors, automating testing, and documentation—AI significantly accelerates and streamlines the development process. Without these tools, we would lose a lot of valuable time, which we certainly want to avoid.

In the next parts of this series, we will cover topics such as:

Stay tuned to keep up with the latest insights!

The Ultimate Web3 Backend Guide: Supercharge dApps with APIs

Tomasz Dybowski

04 Mar 2025
The Ultimate Web3 Backend Guide: Supercharge dApps with APIs

Introduction

Web3 backend development is essential for building scalable, efficient and decentralized applications (dApps) on EVM-compatible blockchains like Ethereum, Polygon, and Base. A robust Web3 backend enables off-chain computations, efficient data management and better security, ensuring seamless interaction between smart contracts, databases and frontend applications.

Unlike traditional Web2 applications that rely entirely on centralized servers, Web3 applications aim to minimize reliance on centralized entities. However, full decentralization isn't always possible or practical, especially when it comes to high-performance requirements, user authentication or storing large datasets. A well-structured backend in Web3 ensures that these limitations are addressed, allowing for a seamless user experience while maintaining decentralization where it matters most.

Furthermore, dApps require efficient backend solutions to handle real-time data processing, reduce latency, and provide smooth user interactions. Without a well-integrated backend, users may experience delays in transactions, inconsistencies in data retrieval, and inefficiencies in accessing decentralized services. Consequently, Web3 backend development is a crucial component in ensuring a balance between decentralization, security, and functionality.

This article explores:

  • When and why Web3 dApps need a backend
  • Why not all applications should be fully on-chain
  • Architecture examples of hybrid dApps
  • A comparison between APIs and blockchain-based logic

This post kicks off a Web3 backend development series, where we focus on the technical aspects of implementing Web3 backend solutions for decentralized applications.

Why Do Some Web3 Projects Need a Backend?

Web3 applications seek to achieve decentralization, but real-world constraints often necessitate hybrid architectures that include both on-chain and off-chain components. While decentralized smart contracts provide trustless execution, they come with significant limitations, such as high gas fees, slow transaction finality, and the inability to store large amounts of data. A backend helps address these challenges by handling logic and data management more efficiently while still ensuring that core transactions remain secure and verifiable on-chain.

Moreover, Web3 applications must consider user experience. Fully decentralized applications often struggle with slow transaction speeds, which can negatively impact usability. A hybrid backend allows for pre-processing operations off-chain while committing final results to the blockchain. This ensures that users experience fast and responsive interactions without compromising security and transparency.

While decentralization is a core principle of blockchain technology, many dApps still rely on a Web2-style backend for practical reasons:

1. Performance & Scalability in Web3 Backend Development

  • Smart contracts are expensive to execute and require gas fees for every interaction.
  • Offloading non-essential computations to a backend reduces costs and improves performance.
  • Caching and load balancing mechanisms in traditional backends ensure smooth dApp performance and improve response times for dApp users.
  • Event-driven architectures using tools like Redis or Kafka can help manage asynchronous data processing efficiently.

2. Web3 APIs for Data Storage and Off-Chain Access

  • Storing large amounts of data on-chain is impractical due to high costs.
  • APIs allow dApps to store & fetch off-chain data (e.g. user profiles, transaction history).
  • Decentralized storage solutions like IPFS, Arweave and Filecoin can be used for storing immutable data (e.g. NFT metadata), but a Web2 backend helps with indexing and querying structured data efficiently.

3. Advanced Logic & Data Aggregation in Web3 Backend

  • Some dApps need complex business logic that is inefficient or impossible to implement in a smart contract.
  • Backend APIs allow for data aggregation from multiple sources, including oracles (e.g. Chainlink) and off-chain databases.
  • Middleware solutions like The Graph help in indexing blockchain data efficiently, reducing the need for on-chain computation.

4. User Authentication & Role Management in Web3 dApps

  • Many applications require user logins, permissions or KYC compliance.
  • Blockchain does not natively support session-based authentication, requiring a backend for handling this logic.
  • Tools like Firebase Auth, Auth0 or Web3Auth can be used to integrate seamless authentication for Web3 applications.

5. Cost Optimization with Web3 APIs

  • Every change in a smart contract requires a new audit, costing tens of thousands of dollars.
  • By handling logic off-chain where possible, projects can minimize expensive redeployments.
  • Using layer 2 solutions like Optimism, Arbitrum and zkSync can significantly reduce gas costs.

Web3 Backend Development: Tools and Technologies

A modern Web3 backend integrates multiple tools to handle smart contract interactions, data storage, and security. Understanding these tools is crucial to developing a scalable and efficient backend for dApps. Without the right stack, developers may face inefficiencies, security risks, and scaling challenges that limit the adoption of their Web3 applications.

Unlike traditional backend development, Web3 requires additional considerations, such as decentralized authentication, smart contract integration, and secure data management across both on-chain and off-chain environments.

Here’s an overview of the essential Web3 backend tech stack:

1. API Development for Web3 Backend Services

  • Node.js is the go-to backend runtime good for Web3 applications due to its asynchronous event-driven architecture.
  • NestJS is a framework built on top of Node.js, providing modular architecture and TypeScript support for structured backend development.

2. Smart Contract Interaction Libraries for Web3 Backend

  • Ethers.js and Web3.js are TypeScript/JavaScript libraries used for interacting with Ethereum-compatible blockchains.

3. Database Solutions for Web3 Backend

  • PostgreSQL: Structured database used for storing off-chain transactional data.
  • MongoDB: NoSQL database for flexible schema data storage.
  • Firebase: A set of tools used, among other things, for user authentication.
  • The Graph: Decentralized indexing protocol used to query blockchain data efficiently.

4. Cloud Services and Hosting for Web3 APIs

When It Doesn't Make Sense to Go Fully On-Chain

Decentralization is valuable, but it comes at a cost. Fully on-chain applications suffer from performance limitations, high costs and slow execution speeds. For many use cases, a hybrid Web3 architecture that utilizes a mix of blockchain-based and off-chain components provides a more scalable and cost-effective solution.

In some cases, forcing full decentralization is unnecessary and inefficient. A hybrid Web3 architecture balances decentralization and practicality by allowing non-essential logic and data storage to be handled off-chain while maintaining trustless and verifiable interactions on-chain.

The key challenge when designing a hybrid Web3 backend is ensuring that off-chain computations remain auditable and transparent. This can be achieved through cryptographic proofs, hash commitments and off-chain data attestations that anchor trust into the blockchain while improving efficiency.

For example, Optimistic Rollups and ZK-Rollups allow computations to happen off-chain while only submitting finalized data to Ethereum, reducing fees and increasing throughput. Similarly, state channels enable fast, low-cost transactions that only require occasional settlement on-chain.

A well-balanced Web3 backend architecture ensures that critical dApp functionalities remain decentralized while offloading resource-intensive tasks to off-chain systems. This makes applications cheaper, faster and more user-friendly while still adhering to blockchain's principles of transparency and security.

Example: NFT-based Game with Off-Chain Logic

Imagine a Web3 game where users buy, trade and battle NFT-based characters. While asset ownership should be on-chain, other elements like:

  • Game logic (e.g., matchmaking, leaderboard calculations)
  • User profiles & stats
  • Off-chain notifications

can be handled off-chain to improve speed and cost-effectiveness.

Architecture Diagram

Below is an example diagram showing how a hybrid Web3 application splits responsibilities between backend and blockchain components.

Hybrid Web3 Architecture

Comparing Web3 Backend APIs vs. Blockchain-Based Logic

FeatureWeb3 Backend (API)Blockchain (Smart Contracts)
Change ManagementCan be updated easilyEvery change requires a new contract deployment
CostTraditional hosting feesHigh gas fees + costly audits
Data StorageCan store large datasetsLimited and expensive storage
SecuritySecure but relies on centralized infrastructureFully decentralized & trustless
PerformanceFast response timesLimited by blockchain throughput

Reducing Web3 Costs with AI Smart Contract Audit

One of the biggest pain points in Web3 development is the cost of smart contract audits. Each change to the contract code requires a new audit, often costing tens of thousands of dollars.

To address this issue, Nextrope is developing an AI-powered smart contract auditing tool, which:

  • Reduces audit costs by automating code analysis.
  • Speeds up development cycles by catching vulnerabilities early.
  • Improves security by providing quick feedback.

This AI-powered solution will be a game-changer for the industry, making smart contract development more cost-effective and accessible.

Conclusion

Web3 backend development plays a crucial role in scalable and efficient dApps. While full decentralization is ideal in some cases, many projects benefit from a hybrid architecture, where off-chain components optimize performance, reduce costs and improve user experience.

In future posts in this Web3 backend series, we’ll explore specific implementation details, including:

  • How to design a Web3 API for dApps
  • Best practices for integrating backend services
  • Security challenges and solutions

Stay tuned for the next article in this series!