Polygon (Matic) – this is what the future of blockchain looks like!

Maciej Zieliński

26 Aug 2021
Polygon (Matic) – this is what the future of blockchain looks like!

Polygon is setting new standards for scaling solutions. A protocol created to build and connect Ethereum-compatible networks shows what the future of blockchain could look like.

Polygon, formerly known as the Matic network, is one of the top-rated solutions using side-chains of the blockchain to provide faster and cheaper transactions on Ethereum. In many ways, it resembles other Layer 2 projects such as Avalanche and Cosmos, but according to its creators, it is much more efficient and secure. Practice seems to confirm this. 

What challenges Polygon is responding to?

Ethereum is the most widely used blockchain protocol, but it has a number of limitations, including:

  • High transaction costs 
  • Low throughput 
  • Problematic UX  

Many projects are now exploring the use of Ethereum-compatible blockchains as a way to mitigate these limitations while leveraging the benefits of the entire ecosystem. However, the market still lacks specialized frameworks to build such blockchains or a protocol to connect them. According to the developers of the Matic network, this causes fragmentation of ecosystems and brings with it serious development challenges.

Solutions

Polygon addresses these issues by implementing solutions such as:

  • One-click deployment of turnkey blockchain networks
  • A growing set of modules for creating custom networks
  • An interoperability protocol for exchanging arbitrary data with Ethereum and other blockchain networks
  • “Security as a service”
  • Adapter modules to enable interoperability of existing blockchain networks

Polygon basics

As a Layer 2 solution, Polygon addresses the diverse needs of developers by providing tools to create scalable dApps that prioritize security, modularity and UX. This is made possible through a protocol architecture consisting of Proof of Stake (PoS) Commit Chains and More Viable Plasma (MoreVP).

In a nutshell, the operation of the Matic network relies on Commit Chains, which are transaction networks that run on the main blockchain, Ethereum. Commit Chains combine transactions into batches, which are then confirmed in bulk before returning the data to Ethereum. 

polygon
Source: polygon.technology

DeFi moves to Polygon

Even the drop in Ethereum gas fees is not stopping more users and developers of decentralized finance from migrating to Polygon. Thanks to the low transaction price and speed of creating more blocks, the number of DeFi projects choosing to use it is growing rapidly. Among them are already Aave and Sushi Swap. 

"There are advantages to using Layer 2 solutions, especially Polygon, because with DeFi, if the transaction cost is very high, for small players and casual speculators, participation just doesn't make sense," Sameep Singhania, founder of the QuickSwap exchange based on the protocol, said in an interview with CoinDesk. "That's why I think it's a good move that DeFi is moving to Polygon.".

Polygon and Sushi Swap

How much the Matic network has grown in importance on the DeFi market is perfectly illustrated by the aforementioned Sushi Swap. According to DappRadar, the popular market maker in June this year had as many as 15 thousand registered wallets on Polygon and only a little over 4 thousand on Ethereum. This means that many more Sushi Swap users are currently on the Matic network than on Ethereum.

A similar relationship is observed on the decentralized exchange Aave, where the average daily transaction volume on Polygon oscillates around $6.75 million, significantly exceeding the $5 million on Ethereum. Coindesk reports that Aave began working with Polygon in March of this year to avoid the high transaction costs on Ethereum.

Token MATIC

The protocol has its own token - MATIC, whose value has managed to increase by 9000% for a year. It is currently the 15th cryptocurrency in terms of capitalization.

"Layer 2 solutions are a catalyst for growth and new users" said Mira Christanto, an analyst at Messari, a blockchain market research firm "Ethereum gas fees have been prohibitive for many users. Polygon and other Layer 2 solutions are precursors to demand for Ethereum once the gas fee hurdle is removed".

Tagi

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Master UI Component Creation with AI: The Ultimate Guide for Developers

Gracjan Prusik

24 Mar 2025
Master UI Component Creation with AI: The Ultimate Guide for Developers

Introduction

Modern frontend development is evolving rapidly, and creating UI components with AI tools is helping developers save time while enhancing interface quality. With AI, we can not only speed up the creation of UI components but also improve their quality, optimize styles, and ensure better accessibility.

This article explores how creating UI components with AI is transforming frontend development by saving time and improving workflows. Specifically, we will discuss:

  • Generating components from images,
  • AI for style analysis and optimization,
  • Automatic style conversion and code migration,
  • AI in generating UI animations.

Creating UI Components with AI from Images

One of the interesting applications of AI in frontend development is the ability to generate components from an image. AI can recognize the structure of the interface and generate HTML/CSS or JSX code that matches the provided image. One of the most popular tools for UI creation is Lovable.

For testing, let's see how the tool performs in creating a simple contact form from the page you are currently on, which is Nextrope.

Query:

"Recreate the image I've sent you in Next.js using CSS."

Sample image used in the query:

The result received:

Tworzenie komponentów UI - Wygenerowany widok

Lovable did an excellent job transforming the image into code. The view is fully responsive. It’s important to remember that the more precise the request, the better the AI will replicate the expected view. However, even with a simple command, the tool performed surprisingly well.

Of course, AI has its limitations. It still makes quite a few mistakes. The generated code still requires review and fixes from the developer, but in some cases, the entire process is significantly sped up—correcting the code often takes less time than creating the component from scratch.

Optimizing UI Components with AI Tools for Style Improvements

This problem of inaccurate code reproduction by AI can be partially addressed by using it to analyze and improve styles. Tools like ChatGPT, DeepSeek and Claude are capable of not only generating code but also diagnosing CSS errors and suggesting why a particular style might not be working as expected.

Simple example: Why is the div not centered?

Query: "Why is this div not centered?"

AI analyzes the code and provides the following response:

Problem: The parent container does not have a defined width or display: flex.
Solution: Add the appropriate styles to the parent container.

.parent {
  display: flex;
  justify-content: center;
  align-items: center;
  width: 100vw;
  height: 100vh;
}

AI for Automatic Style Conversion and Code Migration in UI Components

AI can assist with style conversion between different technologies, such as transferring code from traditional CSS to Styled Components or Tailwind CSS.

Let's assume we have a style written in traditional CSS:

.button {
  background-color: blue;
  color: white;
  padding: 10px 20px;
  border-radius: 5px;
  transition: background-color 0.3s ease;
}

.button:hover {
  background-color: darkblue;
}

We can use AI for automatic conversion to Styled Components:

import styled from "styled-components";

const Button = styled.button`
  background-color: blue;
  color: white;
  padding: 10px 20px;
  border-radius: 5px;
  transition: background-color 0.3s ease;

  &:hover {
    background-color: darkblue;
  }
`;

export default Button;

AI can also assist in migrating code between frameworks, such as from React to Vue or from CSS to Tailwind.

This makes style migration easier and faster.

How AI Enhances UI Animation Creation

Animations are crucial for enhancing user experience in interfaces, but they are not always provided in the project specification. In such cases, developers have to come up with how the animations should look, which can be time-consuming and require significant creativity. AI, in this context, becomes helpful because it can automatically generate CSS animations or animations using libraries like Framer Motion, saving both time and effort.

Example: Automatically Generated Button Animation

Suppose we need to add a subtle scaling animation to a button but don't have a ready-made animation design. Instead of creating it from scratch, AI can generate the code that meets our needs.

Code generated by AI:

import { motion } from "framer-motion";

const AnimatedButton = () => (
  <motion.button
    whileHover={{ scale: 1.1 }}
    whileTap={{ scale: 0.9 }}
    className="bg-blue-500 text-white px-4 py-2 rounded-lg"
  >
    Press me
  </motion.button>
);

In this way, AI accelerates the animation creation process, providing developers with a simple and quick option to achieve the desired effect without the need to manually design animations from scratch.

Summary

AI significantly accelerates the creation of UI components. We can generate ready-made components from images, optimize styles, transform code between technologies, and create animations in just a few seconds. Tools like ChatGPT, DeepSeek, Claude and Lovable are a huge help for frontend developers, enabling faster and more efficient work.

In the next part of the series, we will take a look at:

If you want to learn more about how AI is impacting the entire automation of frontend processes and changing the role of developers, check out our blog article: AI in Frontend Automation – How It's Changing the Developer's Job?

Follow us to stay updated!

AI in Real Estate: How Does It Support the Housing Market?

Miłosz Mach

18 Mar 2025
AI in Real Estate: How Does It Support the Housing Market?

The digital transformation is reshaping numerous sectors of the economy, and real estate is no exception. By 2025, AI will no longer be a mere gadget but a powerful tool that facilitates customer interactions, streamlines decision-making processes, and optimizes sales operations. Simultaneously, blockchain technology ensures security, transparency, and scalability in transactions. With this article, we launch a series of publications exploring AI in business, focusing today on the application of artificial intelligence within the real estate industry.

AI vs. Tradition: Key Implementations of AI in Real Estate

Designing, selling, and managing properties—traditional methods are increasingly giving way to data-driven decision-making.

Breakthroughs in Customer Service

AI-powered chatbots and virtual assistants are revolutionizing how companies interact with their customers. These tools handle hundreds of inquiries simultaneously, personalize offers, and guide clients through the purchasing process. Implementing AI agents can lead to higher-quality leads for developers and automate responses to most standard customer queries. However, technical challenges in deploying such systems include:

  • Integration with existing real estate databases: Chatbots must have access to up-to-date listings, prices, and availability.
  • Personalization of communication: Systems must adapt their interactions to individual customer needs.
  • Management of industry-specific knowledge: Chatbots require specialized expertise about local real estate markets.

Advanced Data Analysis

Cognitive AI systems utilize deep learning to analyze complex relationships within the real estate market, such as macroeconomic trends, local zoning plans, and user behavior on social media platforms. Deploying such solutions necessitates:

  • Collecting high-quality historical data.
  • Building infrastructure for real-time data processing.
  • Developing appropriate machine learning models.
  • Continuously monitoring and updating models based on new data.

Intelligent Design

Generative artificial intelligence is revolutionizing architectural design. These advanced algorithms can produce dozens of building design variants that account for site constraints, legal requirements, energy efficiency considerations, and aesthetic preferences.

Optimizing Building Energy Efficiency

Smart building management systems (BMS) leverage AI to optimize energy consumption while maintaining resident comfort. Reinforcement learning algorithms analyze data from temperature, humidity, and air quality sensors to adjust heating, cooling, and ventilation parameters effectively.

Integration of AI with Blockchain in Real Estate

The convergence of AI with blockchain technology opens up new possibilities for the real estate sector. Blockchain is a distributed database where information is stored in immutable "blocks." It ensures transaction security and data transparency while AI analyzes these data points to derive actionable insights. In practice, this means that ownership histories, all transactions, and property modifications are recorded in an unalterable format, with AI aiding in interpreting these records and informing decision-making processes.

AI has the potential to bring significant value to the real estate sector—estimated between $110 billion and $180 billion by experts at McKinsey & Company.

Key development directions over the coming years include:

  • Autonomous negotiation systems: AI agents equipped with game theory strategies capable of conducting complex negotiations.
  • AI in urban planning: Algorithms designed to plan city development and optimize spatial allocation.
  • Property tokenization: Leveraging blockchain technology to divide properties into digital tokens that enable fractional investment opportunities.

Conclusion

For companies today, the question is no longer "if" but "how" to implement AI to maximize benefits and enhance competitiveness. A strategic approach begins with identifying specific business challenges followed by selecting appropriate technologies.

What values could AI potentially bring to your organization?
  • Reduction of operational costs through automation
  • Enhanced customer experience and shorter transaction times
  • Increased accuracy in forecasts and valuations, minimizing business risks
Nextrope Logo

Want to implement AI in your real estate business?

Nextrope specializes in implementing AI and blockchain solutions tailored to specific business needs. Our expertise allows us to:

  • Create intelligent chatbots that serve customers 24/7
  • Implement analytical systems for property valuation
  • Build secure blockchain solutions for real estate transactions
Schedule a free consultation

Or check out other articles from the "AI in Business" series