Tworzenie Chatbota podobnego do człowieka: Krok po kroku jak trenować modele typu ChatGPT

Paulina Lewandowska

29 sty 2023
Tworzenie Chatbota podobnego do człowieka: Krok po kroku jak trenować modele typu ChatGPT

Wprowadzenie

Trudno jest stworzyć chatbota, który może prowadzić odpowiednie i realistyczne rozmowy. Model GPT-2 został udoskonalony dla zadań konwersacyjnych po przeszkoleniu na ogromnej ilości danych tekstowych. W tym poście prześledzimy, jak wytrenować model ChatGPT (Chat Generative Pre-training Transformer), aby mógł być dostosowany do rozumienia wskazówek konwersacyjnych i reagowania na nie w sposób zbliżony do ludzkiego. Omówimy szczegółowo kluczowe elementy tego podejścia i jak pomagają one stworzyć chatbota, który może prowadzić rozmowy w sposób naturalny.

Jak powstał ChatGPT?

ChatGPT jest wariantem GPT (Generative Pre-training Transformer), który jest modelem językowym opartym na transformacie, opracowanym przez OpenAI. GPT został wytrenowany na ogromnym zbiorze danych tekstów internetowych i dostrojony do konkretnych zadań, takich jak tłumaczenie języków i odpowiadanie na pytania. GPT-2, zaawansowana wersja GPT, została wytrenowana na jeszcze większej ilości danych i ma zdolność generowania tekstu podobnego do ludzkiego. ChatGPT jest precyzyjnie dostrojoną wersją GPT-2, aby poprawić jego wydajność w zadaniach konwersacyjnej AI.

Trening ChatGPT zazwyczaj obejmuje następujące kroki:

Zbierz duży zbiór danych tekstu konwersacyjnego, taki jak transkrypcje czatów z obsługi klienta, rozmowy w mediach społecznościowych lub inne formy dialogu.

O czym należy pamiętać podczas wykonywania tego zadania?

  • Zbiór danych powinien być wystarczająco duży, aby uchwycić szeroką gamę stylów i tematów rozmów. Im bardziej zróżnicowane dane, tym lepiej model będzie w stanie obsłużyć różne typy danych wejściowych i wygenerować bardziej realistyczne i odpowiednie odpowiedzi.
  • Dane powinny być reprezentatywne dla typów rozmów, do których model będzie wykorzystywany. Na przykład, jeśli model będzie używany w chatbocie do obsługi klienta, powinien być trenowany na transkrypcjach rozmów z obsługi klienta.
  • Jeśli to możliwe, uwzględnij różnych mówców i języki. Dzięki temu model nauczy się generować odpowiednie odpowiedzi w różnych kontekstach i dla różnych typów użytkowników.
  • Dane powinny być zróżnicowane pod względem liczby mówców, języków, akcentów i tła kulturowego.
  • Oznacz dane kontekstem rozmowy, takim jak temat, intencje, sentyment, itp.
  • Pamiętaj, aby odfiltrować wszelkie informacje osobiste, dane wrażliwe lub dane, które mogłyby zostać wykorzystane do identyfikacji osoby.

Wstępne przetwarzanie danych w celu oczyszczenia i sformatowania ich do treningu modelu. Może to obejmować tokenizację tekstu, usunięcie znaków specjalnych i konwersję tekstu na małe litery.

Kluczową częścią szkolenia modelu konwersacyjnego, takiego jak ChatGPT, jest wstępne przetwarzanie danych. Korzystne jest uporządkowanie i oczyszczenie danych, aby model mógł być łatwo trenowany. Tokenizacja jest aktem dzielenia tekstu na mniejsze części, takie jak słowa lub frazy, w sposób bardziej szczegółowy. Pomaga to w przekształceniu tekstu w format, który model może przetwarzać szybciej. Do przeprowadzenia procedury tokenizacji można użyć aplikacji takiej jak NLTK lub SpaCy.

Eliminacja znaków specjalnych i zmiana wielkości liter w tekście to kolejne kluczowe kroki. Konwersja tekstu na małe litery pomaga ujednolicić dane i obniża ilość unikalnych słów, których model musi się nauczyć. Znaki specjalne mogą powodować problemy podczas treningu modelu. Dobrym pomysłem jest również zastąpienie dat lub liczb konkretnym tokenem, takim jak "NUM" lub "DATE" podczas przygotowywania danych. W tym procesie dobrze jest również zastąpić terminy, które są nieznane lub nie występują w leksykonie modelu, unikalnym tokenem, takim jak "UNK".

Kluczowe jest zauważenie, że przygotowanie danych może być czasochłonne, ale jest konieczne, aby model mógł skorzystać z danych. Wstępne przetwarzanie danych ułatwia modelowi ich interpretację i uczenie się z nich. Sprawia również, że dane są bardziej spójne.

Dostosuj wstępnie wytrenowany model GPT-2 na zestawie danych konwersacyjnych, używając frameworka takiego jak biblioteka Hugging Face's Transformers.

Procedura obejmuje dostosowanie hiperparametrów modelu i przeprowadzenie kilku epok treningowych na zestawie danych konwersacyjnych. Można to osiągnąć wykorzystując framework taki jak biblioteka Hugging Face's Transformers, open-source'owy zestaw narzędzi do przetwarzania języka naturalnego, który oferuje wstępnie wytrenowane modele i przyjazne interfejsy do ich optymalizacji.

Uzasadnieniem dla dostrajania wstępnie wytrenowanego modelu jest to, że został on wcześniej wytrenowany na dużym zbiorze danych i ma solidne pojęcie o ogólnej strukturze języka. Model może być udoskonalony na zestawie danych konwersacyjnych, dzięki czemu może nauczyć się produkować odpowiedzi, które są bardziej dostosowane do tematu rozmowy. Ulepszony model będzie lepiej radził sobie z produkcją.

Należy pamiętać, że hiperparametry modelu, takie jak szybkość uczenia, rozmiar partii i liczba warstw, są często zmieniane podczas fazy dostrajania. Hiperparametry te mogą znacząco wpływać na wydajność modelu, dlatego konieczne jest eksperymentowanie z różnymi ustawieniami w celu znalezienia idealnego. Dodatkowo, w zależności od rozmiaru zbioru danych konwersacyjnych i złożoności modelu, procedura dostrajania może wymagać znacznej ilości czasu i zasobów obliczeniowych. Jednak aby model mógł zrozumieć dokładne niuanse i wzorce dialogu oraz stać się bardziej przydatny do zadania, ten etap jest niezbędny.

Oceniaj działanie modelu na zatrzymanym zestawie testowym, aby upewnić się, że generuje on realistyczne i odpowiednie odpowiedzi.

Przytrzymany zestaw testowy, który jest zbiorem danych różniącym się od danych używanych do szkolenia i dostrajania modelu, jest jedną z popularnych strategii. Zdolność modelu do generowania realistycznych i trafnych odpowiedzi jest oceniana przy użyciu held-out testu.

Pomiar zdolności modelu konwersacyjnego do dostarczania odpowiednich i realistycznych odpowiedzi jest typową techniką oceny jego wydajności. Można to osiągnąć poprzez ocenę podobieństwa pomiędzy odpowiedziami wygenerowanymi przez model i napisanymi przez człowieka. Wykorzystanie metryk takich jak BLEU, METEOR, ROUGE i innych jest jednym z podejść do tego celu. Metryki te oceniają, jak porównywalne są do siebie odpowiedzi wygenerowane automatycznie i napisane ręcznie.

Można również zmierzyć zdolność modelu konwersacyjnego do rozumienia i reagowania na różne dane wejściowe. Osiąga się to, wystawiając model na próbę z różnymi wejściami i oceniając, jak dobrze na nie reaguje. Model testuje się używając danych wejściowych z różnymi intencjami, tematami lub uczuciami, a następnie ocenia się jak efektywnie potrafi na nie reagować.

Użyj wytrenowanego modelu do generowania odpowiedzi na nowe dane wejściowe.

Raz wytrenowany i ulepszony model może być wykorzystany do generowania odpowiedzi na nowe dane wejściowe. Ostatnim etapem tworzenia chatbota jest testowanie modelu, aby upewnić się, że może on realistycznie i odpowiednio reagować na nowe dane wejściowe. Wyszkolony model przetwarza dane wejściowe przed wygenerowaniem odpowiedzi. Należy pamiętać, że kaliber reakcji będzie zależał od ustawienia danych szkoleniowych i procedury dostrajania.

Kontekst jest kluczowy, gdy używamy wytrenowanego modelu do generowania odpowiedzi w rozmowie. Aby wygenerować odpowiedzi, które są istotne i odpowiednie dla bieżącej konwersacji, ważne jest, aby śledzić historię rozmowy. W tym celu można wykorzystać menedżera dialogu, który zarządza historią konwersacji i tworzy odpowiednie dane wejściowe dla modelu.

Szczególnie w przypadku zastosowania wyszkolonego modelu do generowania odpowiedzi, krytyczne jest zapewnienie jakości odpowiedzi generowanych przez model. Ponieważ model może nie zawsze tworzyć odpowiednie lub realistyczne odpowiedzi, powinna istnieć technika eliminacji niewłaściwych odpowiedzi. Użycie fazy post-processingu, która odfiltrowałaby nieodpowiednie odpowiedzi i wybrała najlepszą z nich jest jednym ze sposobów, aby to osiągnąć.

Wnioski

Szkolenie modelu ChatGPT jest wieloetapowym procesem, który wymaga dużej ilości danych. Model GPT-2 z jego zdolnością do generowania tekstu podobnego do ludzkiego i dostrojenie go z zestawem danych konwersacyjnych może prowadzić do bardzo potężnych wyników, które mogą być niezwykle pomocne w codziennym życiu. Proces szkolenia jest niezbędny do stworzenia chatbota, który będzie w stanie zrozumieć i odpowiedzieć na podpowiedzi konwersacyjne w naturalny i bezproblemowy sposób. W miarę rozwoju dziedziny AI, rozwój zaawansowanych chatbotów będzie odgrywał coraz większą rolę w ulepszaniu sposobu, w jaki wchodzimy w interakcje z technologią. Zainteresowany? Sprawdź nasze inne artykuły związane z AI!

Tagi

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

AI w Branży Nieruchomości. Jak wspiera rynek mieszkań?

Miłosz Mach

13 mar 2025
AI w Branży Nieruchomości. Jak wspiera rynek mieszkań?

Obecnie wiele sektorów gospodarki przechodzi transformację cyfrową. AI w 2025 to już nie tylko gadżet, a narzędzie, które przeprowadza rozmowy z klientami, usprawnia podejmowanie decyzji i optymalizuje procesy sprzedażowe. Równolegle, technologia blockchain zapewnia bezpieczeństwo , transparentność i skalowalność transakcji. Tym wpisem rozpoczynamy serię publikacji o AI w biznesie, a dzisiejszy artykuł poświęcimy wykorzystaniu sztucznej inteligencji w branży nieruchomości.

AI vs. Tradycja: Kluczowe Implementacje AI w Sektorze Nieruchomości

Projektowanie, sprzedaż, i zarządzanie - dotychczasowe metody ustępują miejsca decyzjom wspieranym danymi.

Przełom w Obsłudze Klienta

Chatboty i Asystenci AI zmieniają sposób, w jaki firmy komunikują się z klientami. Obsługują równocześnie setki zapytań, personalizują oferty i prowadzą klientów przez proces zakupowy. Wdrożenie agentów AI może prowadzić do wzrostu jakościowych leadów dla deweloperów oraz automatyzacji odpowiedzi na większość standardowych zapytań klientów. Wyzwania techniczne przy implementacji takich systemów obejmują:

  • Integrację z istniejącymi bazami danych nieruchomości - chatbot musi mieć dostęp do aktualnych ofert, cen i dostępności
  • Personalizację komunikacji - system musi dostosowywać komunikację do indywidualnych potrzeb klienta
  • Zarządzanie wiedzą branżową - chatbot potrzebuje specjalistycznej wiedzy o lokalnym rynku nieruchomości

Zaawansowana Analiza Danych

Systemy kognitywnej AI wykorzystują uczenie głębokie (deep learning) do analizy złożonych zależności na rynku nieruchomości, t.j. trendów makroekonomicznych, lokalnych planów zagospodarowania czy zachowań użytkowników na platformach społecznościowych. Wdrożenie takiego rozwiązania wymaga:

  • Zebrania wysokiej jakości danych historycznych
  • Stworzenia infrastruktury do przetwarzania danych w czasie rzeczywistym
  • Opracowania odpowiednich modeli uczenia maszynowego
  • Ciągłego monitorowania i aktualizacji modeli w oparciu o nowe dane

Inteligentne Projektowanie

Generatywna sztuczna inteligencja rewolucjonizuje projektowanie architektoniczne. Te zaawansowane algorytmy potrafią generować dziesiątki wariantów projektu budynku uwzględniających ograniczenia działki, wymogi prawne, efektywność energetyczną i preferencje estetyczne.

Optymalizacja Efektywności Energetycznej Budynków

Inteligentne systemy zarządzania budynkami (BMS) wykorzystują AI do optymalizacji zużycia energii przy jednoczesnym zachowaniu komfortu mieszkańców. Algorytmy uczenia ze wzmocnieniem (reinforcement learning) badają dane z czujników temperatury, wilgotności i jakości powietrza, a następnie dostosowują parametry ogrzewania, klimatyzacji i wentylacji.

Integracja AI z Blockchain a Tokenizacja Nieruchomości

Połączenie AI z technologią blockchain stwarza nowe możliwości dla branży nieruchomości. Blockchain to rozproszona baza danych, w której informacje są przechowywane w niezmienialnych "blokach". Zapewnia bezpieczeństwo transakcji i transparentność danych, podczas gdy AI analizuje te dane i wyciąga wnioski. W praktyce oznacza to, że historia własności, wszystkie transakcje i modyfikacje nieruchomości są zapisane w sposób niemożliwy do podrobienia, a AI pomaga w interpretacji tych danych i podejmowaniu decyzji.

Przyszłość AI w Branży Nieruchomości: Trendy i Prognozy

AI w sektorze nieruchomości ma potencjał przyniesienia branży wartości od 110 do 180 miliardów dolarów amerykańskich, jak podkreślają eksperci McKinsey & Company.

Kluczowe kierunki rozwoju w najbliższych latach to:

  • Autonomiczne systemy negocjacyjne - agenci AI wyposażeni w strategie teorii gier, zdolni do prowadzenia złożonych negocjacji
  • AI w planowaniu urbanistycznym - algorytmy planujące rozwój miast i optymalną alokację przestrzeni
  • Tokenizacja nieruchomości - wykorzystanie blockchain do podziału nieruchomości na cyfrowe tokeny, umożliwiające inwestowanie w części nieruchomości

Wnioski

Pytanie dla firm nie brzmi już "czy", ale "jak" wdrażać AI, aby maksymalizować korzyści i konkurencyjność swoich ofert. Strategiczne podejście zaczyna się od zdefiniowania konkretnych problemów biznesowych, a następnie doboru odpowiednich technologii.

Jakie wartości potencjalnie wniesie do Twojej organizacji?
  • Obniżenie kosztów operacyjnych dzięki automatyzacji
  • Poprawę doświadczenia klienta i skrócenie czasu transakcji
  • Zwiększenie dokładności prognoz i wycen, redukcja ryzyka biznesowego
Nextrope Logo

Chcesz wdrożyć AI w swoim biznesie nieruchomości?

Nextrope specjalizuje się w implementacji rozwiązań AI i blockchain dostosowanych do konkretnych potrzeb biznesowych. Nasze doświadczenie pozwala na:

  • Tworzenie inteligentnych chatbotów obsługujących klientów 24/7
  • Implementację systemów analitycznych do wyceny nieruchomości
  • Budowę bezpiecznych rozwiązań blockchain dla transakcji nieruchomościowych
Umów bezpłatną konsultację

Lub sprawdź pozostałe artykuły z serii "AI w biznesie"

AI w automatyzacji frontendowej – jak zmienia pracę programisty?

Gracjan Prusik

10 mar 2025
AI w automatyzacji frontendowej – jak zmienia pracę programisty?

Rewolucja AI w Warsztacie Frontendowca

W dzisiejszych czasach programowanie bez wsparcia AI to rezygnacja z potężnego narzędzia, które radykalnie zwiększa produktywność i wydajność developera. Dla współczesnego developera AI w automatyzacji frontendowej to nie tylko ciekawostka, ale kluczowe narzędzie zwiększające produktywność. Od automatycznego generowania komponentów, przez refaktoryzację, aż po testowanie - narzędzia AI fundamentalnie zmieniają naszą codzienną pracę, pozwalając skupić się na kreatywnych aspektach programowania zamiast na żmudnym pisaniu powtarzalnego kodu. W tym artykule pokażę, jak najczęściej wykorzystywane są te narzędzia, aby pracować szybciej, mądrzej i z większą satysfakcją.

Ten wpis rozpoczyna serię poświęconą zastosowaniu AI w automatyzacji frontendowej, w której będziemy analizować i omawiać konkretne narzędzia, techniki i praktyczne przypadki użycia AI, pomagające programistom w codziennej pracy.

AI w automatyzacji frontendowej – jak pomaga w refaktoryzacji kodu?

Jednym z najczęstszych zastosowań AI jest poprawianie jakości kodu i znajdowanie błędów. Narzędzia potrafią analizować kod i sugerować optymalizacje. Dzięki temu będziemy w stanie pisać kod znacznie szybciej, a także znacznie zmniejszyć ryzyko związane z ludzkim błędem.

Jak AI ratuje nas przed frustrującymi błędami

Wyobraź sobie sytuację: spędzasz godziny debugując aplikację, nie rozumiejąc dlaczego dane nie są pobierane. Wszystko wydaje się poprawne, składnia jest prawidłowa, a jednak coś nie działa. Często problem tkwi w drobnych szczegółach, które trudno wychwycić podczas przeglądania kodu.

Spójrzmy na przykład:

function fetchData() {
    fetch("htts://jsonplaceholder.typicode.com/posts")
      .then((response) => response.json())
      .then((data) => console.log(data))
      .catch((error) => console.error(error));
}

Na pierwszy rzut oka kod wygląda poprawnie. Jednak po uruchomieniu nie otrzymamy żadnych danych. Dlaczego? W URL-u znajduje się literówka - "htts" zamiast "https". To klasyczny przykład błędu, który może kosztować developera godziny frustrującego debugowania.

Kiedy poprosimy AI o refaktoryzację tego kodu, nie tylko otrzymamy bardziej czytelną wersję wykorzystującą nowsze wzorce (async/await), ale również - co najważniejsze - AI automatycznie wykryje i naprawi literówkę w adresie URL:

async function fetchPosts() {
    try {
      const response = await fetch(
        "https://jsonplaceholder.typicode.com/posts"
      );
      const data = await response.json();
      console.log(data);
    } catch (error) {
      console.error(error);
    }
}

Jak AI w automatyzacji frontendowej przyspiesza tworzenie UI?

Jednym z najbardziej oczywistych zastosowań AI w frontendzie jest generowanie komponentów UI. Narzędzia takie jak GitHub Copilot, ChatGPT czy Claude potrafią wygenerować kod komponentu na podstawie krótkiego opisu lub przesłanego im obrazu.

Dzięki tym narzędziom możemy tworzyć złożone interfejsy użytkownika w zaledwie kilkadziesiąt sekund. Wygenerowanie kompletnego, funkcjonalnego komponentu UI zajmuje często mniej niż minutę. Co więcej, wygenerowany kod jest zazwyczaj pozbawiony błędów, zawiera odpowiednie animacje i jest w pełni responsywny, dostosowując się do różnych rozmiarów ekranu. Ważne jest, aby dokładnie opisać czego oczekujemy.

Widok wygenerowany przez Claude po wpisaniu "Na podstawie wczytywanych danych wyświetl posty. Strona ma być responsywna. Kolory przewodnie to: #CCFF89, #151515 i #E4E4E4".

Wygenerowany widok postów

AI w analizie i rozumieniu kodu

AI może analizować istniejący kod i pomóc w jego zrozumieniu, co jest szczególnie przydatne w przypadku dużych, skomplikowanych projektów lub kodu napisanego przez kogoś innego.

Przykład: Generowanie podsumowania działania funkcji

Załóżmy, że mamy funkcję do przetwarzania danych użytkowników, której działania nie rozumiemy na pierwszy rzut oka. AI może przeanalizować kod i wygenerować jego czytelne wyjaśnienie:

function processUserData(users) {
  return users
    .filter(user => user.isActive) // Sprawdza wartość `isActive` dla każdego użytkownika i zostawia tylko te obiekty, gdzie `isActive` jest prawdziwe (true)
    .map(user => ({ 
      id: user.id, // Pobiera wartość `id` z każdego obiektu użytkownika
      name: `${user.firstName} ${user.lastName}`, // Tworzy nowy string, łącząc `firstName` i `lastName`
      email: user.email.toLowerCase(), // Zamienia adres e-mail na małe litery
    }));
}

W tym przypadku AI nie tylko podsumowuje działanie kodu, ale też rozbija poszczególne operacje na łatwiejsze do zrozumienia fragmenty.

AI w automatyzacji frontendowej – tłumaczenia i wykrywanie błędów

Każdy frontendowiec wie, że praca programisty to nie tylko kreatywne tworzenie interfejsów, ale także mnóstwo powtarzalnych, żmudnych zadań. Jednym z nich jest implementacja tłumaczeń dla aplikacji wielojęzycznych (i18n). Dodawanie tłumaczeń dla każdego klucza w plikach JSON, a następnie ich weryfikacja, potrafi być czasochłonna i podatna na błędy.

Dzięki AI możemy jednak znacznie przyspieszyć ten proces. Wykorzystanie ChatGPT, DeepSeek czy Claude pozwala na automatyczne generowanie tłumaczeń dla interfejsu użytkownika, a także wychwytywanie błędów językowych i stylistycznych.

Przykład:

Mamy plik tłumaczeń w formacie JSON:

{
  "welcome_message": "Witaj w naszej aplikacji!",
  "logout_button": "Wyloguj się",
  "error_message": "Coś poszło nie tak. Spróbuj ponownie później."
}

AI może automatycznie wygenerować jego wersję w języku angielskim:

{
  "welcome_message": "Welcome to our application!",
  "logout_button": "Log out",
  "error_message": "Something went wrong. Please try again later."
}

Co więcej, AI potrafi wykryć błędy ortograficzne czy niekonsekwencje w tłumaczeniach. Jeśli na przykład w jednym miejscu użyliśmy "Wyloguj się", a w innym "Wyjdź", AI może zasugerować ujednolicenie terminologii.

Tego typu automatyzacja nie tylko oszczędza czas, ale też minimalizuje ryzyko ludzkich błędów. A to tylko jeden z przykładów – AI pomaga również w generowaniu dokumentacji, pisaniu testów oraz optymalizacji wydajności – o czym opowiemy w kolejnych artykułach.

Podsumowanie

Sztuczna inteligencja zmienia sposób, w jaki frontendowcy pracują na co dzień. Od generowania komponentów, przez refaktoryzację kodu i wykrywanie błędów, aż po automatyczne testowanie i dokumentację – AI znacząco przyspiesza i usprawnia pracę. Bez tych narzędzi stracimy bardzo dużo czasu, czego oczywiście nie chcemy.

W kolejnych częściach serii omówimy m.in.:

Śledź nas, aby być na bieżąco!