What is Automated Market Maker (AMM)?

Maciej Zieliński

07 Oct 2021
What is Automated Market Maker (AMM)?

Forget order books, the future of Decentralized Exchanges lies in Automated Market Makers. Automated Market Maker AMM enables traders to earn shares of transactions in exchange for becoming liquidity providers. What does it mean for DEXs? 

In this article you will learn:

  • What are Automated Market Makers?
  • How does Automated Market Maker work?
  • AMM vs On-chain / Off-chain order book 
  • How to implement liquidity pools into your DEXs
  • Why are Automated Makers so important for the whole DeFi ecosystem?

Automated Market Makers were first introduced to the public with the release of Uniswap in 2018. 

Essentially, they are autonomous trading machines that replace traditional order books with liquidity pools run by algorithms. 

What are Automated Market Makers?

As we mentioned in one of our previous articles, a decentralized exchange can handle trading in three ways:

  • On-chain order book
  • Off-chain order book
  • Automated Market Maker AMM

The last one is undoubtedly the most efficient. That's why the vast majority of modern decentralized exchanges are based on it.

Definition:

Automated Market Maker AMM is a decentralized exchange protocol that relies on smart contracts to set the price of digital assets and provide liquidity.

Cryptocurrency assets are priced according to a pricing algorithm and mathematical formula, instead of the order book that is used by traditional exchanges.

The mathematical formula varies from protocol to protocol. Uniswap, for example, uses the following formula:

a * b = k

Where 'a' and 'b' are the number of tokens traded in the liquidity pool. Since 'k' is constant, the  total liquidity of the pool must always remain the same. Different AMMS use various formulas. However, all of them set the price algorithmically. 

What's important, Automated Market Makers allow almost anyone create a market using blockchain technology.

How Automated Market Makers work?

For trading pairs, for example, BTC/ETH, Automated Market Makers work similarly to order books, which are based on buy and sell orders. However, a vital difference is that a trading pair isn't needed to make a trade. Alternatively, users can interact with a smart contract that will constitute the other side of the trading pair for them. This is what the term “automated market-making” refers to. 

P2P and P2C

You are probably familiar with the term “peer-to-peer transactions,” which is crucial to understanding decentralized exchanges. Every transaction that runs between two users without any intermediary can be called P2P. 

We can think about Automated Market Makers as peer-to-contract solutions because trades take place between users and a smart contract. 

Liquidity pools

Trading pairs, which you know from Centralized Exchange and Decentralized Exchange using order books, are an individual liquidity pool in Automated Market Maker. Therefore, users are essentially trading funds with liquidity pools, rather than with other users. 

If you want to trade two tokens, for example, sell BNB for Ether, you need to find the BNB/ETH liquidity pool. 

We can imagine a liquidity pool as a large pile of assets. But where do they come from?

Liquidity providers 

The answer might sound quite surprising: funds are added to liquidity pools by the users of the exchange. Or, more precisely, liquidity providers.

In exchange for providing liquidity, liquidity providers earn fees on transactions in their pool. Unlike traditional market making with professional market makers, here anyone can become one. 

Profits for liquidity

To become a liquidity provider you need to deposit both assets represented in the pool. Adding funds to the liquidity pool is not difficult and rewards are worth considering. The profits of liquidity providers differ depending on the platform. For instance, on Uniswap 0,3% of every transaction goes to liquidity providers.

Slippage on Automated Market Makers

Different Automated Market Makers may encounter different issues. Yet the risk of slippage is something we should always keep in mind while planning our own DEX. 

Why does it occur?

As I mentioned earlier, asset pricing is determined by an algorithm and a mathematical formula. We can say that it's determined by the ratio between the assets in the liquidity pool. Or more specifically, it is the change in this ratio that occurs after a trade. The larger the transaction, the wider the margin of change, and the greater the amount of slippage. 

Indeed, when a large order is placed in AMMs and a sizable amount of coin is removed or added to a liquidity pool, it can even cause a notable difference between the market price and the pool price. 

More liquidity = less slippage 

In the Automated Market Maker model, more liquidity means less slippage that large orders may incur. Ultimately, this may attract more volume to your DEX. That's why if you want to use Automated Market Maker on your platform, you need to have a solid strategy for encouraging your users to deposit funds in liquidity pools.

You need to remember that to stay competitive in the decentralized finance market, you should offer liquidity of at least a sufficient level. 

Generally, exchanges decide on sharing profits generated by trading fees with liquidity providers. In some cases (e. g. Uniswap), all the fees go to liquidity providers. If a user's deposit represents 5% of the assets locked in a pool, they will receive an equivalent of 5% of that pool’s accrued trading fees. The profit will be paid out in liquidity provider tokens. When users want to leave the pool, they simply exchange their tokens for their share of transaction fees. 

Yield Farming

Yield farming is one of the most important opportunities that can attract new users to your DEX platform. How does it work? What does it even mean? 

LP tokens

We often say that liquidity has a pivotal value in the DeFi space. Creating tokens that are awarded in exchange for providing liquidity is a great idea to increase it. 

Normally when a token is staked or deposited somehow, it cannot be used or traded, which decreases liquidity in the whole system. In the case of Automated Market Makers, implementing easily convertible liquidity provider tokens solves the problem of locked liquidity. Their mechanism is simple: users get them as proof of owing tokens that they have deposited. 

With LP tokens, each token can be used multiple times, despite being invested in one of the liquidity pools. Additionally, we can say that LP tokens open up a new, indirect form of staking. This means that instead of staking tokens themselves we just prove that we own them. 

What is Yield Farming? 

Yes, on multiple exchanges users can stake their LP tokens and profit from them. Essentially, this is what we call yield farming. The main idea behind it is to maximize profits by moving tokens in and out of different DeFi protocols.

How does it work on DEXs? 

Actually, from the user perspective it's quite simple:

  • deposit assets into a liquidity pool 
  • collect LP tokens
  • deposit or stake LP tokens into a separate lending protocol
  • earn profit from both protocols 

Note: You must exchange your LP tokens to withdraw your shares from the initial liquidity pool.

What is impermanent loss?

Impermanent loss occurs when the price ratio of two assets changes after traders deposit them in the pool. The higher the shift in price, the more significant the impermanent loss. Impermanent loss mostly affects liquidity pools with highly volatile assets. 

However, this loss is impermanent: there is a probability that the price ratio will revert. Permanent losses can only occur if liquidity providers withdraw their digital assets before the price ratio reverts. 

Conclusion 

Of all the solutions that we can currently observe on decentralized exchanges, the Automated Market Maker offers the highest liquidity. Today most DEXs are running on AMM or plan to implement it in the nearest future. That's why Automated Market Maker has crucial importance for the DeFi ecosystem.Do you want to know how to apply Automated Market Maker in your project? Don't hesitate to ask our specialists for a free consultation.

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

What is Berachain? 🐻 ⛓️ + Proof-of-Liquidity Explained

Karolina

18 Mar 2024
What is Berachain? 🐻 ⛓️ + Proof-of-Liquidity Explained

Enter Berachain: a high-performance, EVM-compatible blockchain that is set to redefine the landscape of decentralized applications (dApps) and blockchain services. Built on the innovative Proof-of-Liquidity consensus and leveraging the robust Polaris framework alongside the CometBFT consensus engine, Berachain is poised to offer an unprecedented blend of efficiency, security, and user-centric benefits. Let's dive into what makes it a groundbreaking development in the blockchain ecosystem.

What is Berachain?

Overview

Berachain is an EVM-compatible Layer 1 (L1) blockchain that stands out through its adoption of the Proof-of-Liquidity (PoL) consensus mechanism. Designed to address the critical challenges faced by decentralized networks. It introduces a cutting-edge approach to blockchain governance and operations.

Key Features

  • High-performance Capabilities. Berachain is engineered for speed and scalability, catering to the growing demand for efficient blockchain solutions.
  • EVM Compatibility. It supports all Ethereum tooling, operations, and smart contract languages, making it a seamless transition for developers and projects from the Ethereum ecosystem.
  • Proof-of-Liquidity.This novel consensus mechanism focuses on building liquidity, decentralizing stake, and aligning the interests of validators and protocol developers.

MUST READ: Docs

EVM-Compatible vs EVM-Equivalent

EVM-Compatible

EVM compatibility means a blockchain can interact with Ethereum's ecosystem to some extent. It can interact supporting its smart contracts and tools but not replicating the entire EVM environment.

EVM-Equivalent

An EVM-equivalent blockchain, on the other hand, aims to fully replicate Ethereum's environment. It ensures complete compatibility and a smooth transition for developers and users alike.

Berachain's Position

Berachain can be considered an "EVM-equivalent-plus" blockchain. It supports all Ethereum operations, tooling, and additional functionalities that optimize for its unique Proof-of-Liquidity and abstracted use cases.

Berachain Modular First Approach

At the heart of Berachain's development philosophy is the Polaris EVM framework. It's a testament to the blockchain's commitment to modularity and flexibility. This approach allows for the easy separation of the EVM runtime layer, ensuring that Berachain can adapt and evolve without compromising on performance or security.

Proof Of Liquidity Overview

High-Level Model Objectives

  • Systemically Build Liquidity. By enhancing trading efficiency, price stability, and network growth, Berachain aims to foster a thriving ecosystem of decentralized applications.
  • Solve Stake Centralization. The PoL consensus works to distribute stake more evenly across the network, preventing monopolization and ensuring a decentralized, secure blockchain.
  • Align Protocols and Validators. Berachain encourages a symbiotic relationship between validators and the broader protocol ecosystem.

Proof-of-Liquidity vs Proof-of-Stake

Unlike traditional Proof of Stake (PoS), which often leads to stake centralization and reduced liquidity, Proof of Liquidity (PoL) introduces mechanisms to incentivize liquidity provision and ensure a fairer, more decentralized network. Berachain separates the governance token (BGT) from the chain's gas token (BERA) and incentives liquidity through BEX pools. Berachain's PoL aims to overcome the limitations of PoS, fostering a more secure and user-centric blockchain.

Berachain EVM and Modular Approach

Polaris EVM

Polaris EVM is the cornerstone of Berachain's EVM compatibility, offering developers an enhanced environment for smart contract execution that includes stateful precompiles and custom modules. This framework ensures that Berachain not only meets but exceeds the capabilities of the traditional Ethereum Virtual Machine.

CometBFT

The CometBFT consensus engine underpins Berachain's network, providing a secure and efficient mechanism for transaction verification and block production. By leveraging the principles of Byzantine fault tolerance (BFT), CometBFT ensures the integrity and resilience of the Berachain blockchain.

Conclusion

Berachain represents a significant leap forward in blockchain technology, combining the best of Ethereum's ecosystem with innovative consensus mechanisms and a modular development approach. As the blockchain landscape continues to evolve, Berachain stands out as a promising platform for developers, users, and validators alike, offering a scalable, efficient, and inclusive environment for decentralized applications and services.

Resources

For those interested in exploring further, a wealth of resources is available, including the Berachain documentation, GitHub repository, and community forums. It offers a compelling vision for the future of blockchain technology, marked by efficiency, security, and community-driven innovation.

FAQ

How is Berachain different?

  • It integrates Proof-of-Liquidity to address stake centralization and enhance liquidity, setting it apart from other blockchains.

Is Berachain EVM-compatible?

  • Yes, it supports Ethereum's tooling and smart contract languages, facilitating easy migration of dApps.

Can it handle high transaction volumes?

  • Yes, thanks to the Polaris framework and CometBFT consensus engine, it's built for scalability and high throughput.

Different Token Release Schedules

Kajetan Olas

15 Mar 2024
Different Token Release Schedules

As simple as it may sound, the decision on the release schedule of tokens is anything but that. It's a strategic choice that can have significant consequences. A well-thought-out token release schedule can prevent market flooding, encourage steady growth, and foster trust in the project. Conversely, a poorly designed schedule may lead to rapid devaluation or loss of investor confidence.

In this article, we will explore the various token release schedules that blockchain projects may adopt. Each type comes with its own set of characteristics, challenges, and strategic benefits. From the straightforwardness of linear schedules to the incentive-driven dynamic releases, understanding these mechanisms is crucial for all crypto founders.

Linear Token Release Schedule

The linear token release schedule is perhaps the most straightforward approach to token distribution. As the name suggests, tokens are released at a constant rate over a specified period until all tokens are fully vested. This approach is favored for its simplicity and ease of understanding, which can be an attractive feature for investors and project teams alike.

Characteristics

  • Predictability: The linear model provides a clear and predictable schedule that stakeholders can rely on. This transparency is often appreciated as it removes any uncertainty regarding when tokens will be available.
  • Implementation Simplicity: With no complex rules or conditions, a linear release schedule is relatively easy to implement and manage. It avoids the need for intricate smart contract programming or ongoing adjustments.
  • Neutral Incentives: There is no explicit incentive for early investment or late participation. Each stakeholder is treated equally, regardless of when they enter the project. This can be perceived as a fair distribution method, as it does not disproportionately reward any particular group.

Implications

  • Capital Dilution Risk: Since tokens are released continuously at the same rate, there's a potential risk that the influx of new tokens into the market could dilute the value, particularly if demand doesn't keep pace with the supply.
  • Attracting Continuous Capital Inflow: A linear schedule may face challenges in attracting new investors over time. Without the incentive of increasing rewards or scarcity over time, sustaining investor interest solely based on project performance can be a test of the project's inherent value and market demand.
  • Neutral Impact on Project Commitment: The lack of timing-based incentives means that commitment to the project may not be influenced by the release schedule. The focus is instead placed on the project's progress and delivery on its roadmap.

In summary, a linear token release schedule offers a no-frills, equal-footing approach to token distribution. While its simplicity is a strength, it can also be a limitation, lacking the strategic incentives that other models offer. In the next sections, we will compare this to other, more dynamic schedules that aim to provide additional strategic advantages.

Growing Token Release Schedule

A growing token release schedule turns the dial up on token distribution as time progresses. This schedule is designed to increase the number of tokens released to the market or to stakeholders with each passing period. This approach can often be associated with incentivizing the sustained growth of the project by rewarding long-term holders.

Characteristics

  • Incentivized Patience: A growing token release schedule encourages stakeholders to remain invested in the project for longer periods, as the reward increases over time. This can be particularly appealing to long-term investors who are looking to maximize their gains.
  • Community Reaction: Such a schedule may draw criticism from those who prefer immediate, high rewards and may be viewed as unfairly penalizing early adopters who receive fewer tokens compared to those who join later. The challenge is to balance the narrative to maintain community support.
  • Delayed Advantage: There is a delayed gratification aspect to this schedule. Early investors might not see an immediate substantial benefit, but they are part of a strategy that aims to increase value over time, aligning with the project’s growth.

Implications

  • Sustained Capital Inflow: By offering higher rewards later, a project can potentially sustain and even increase its capital inflow as the project matures. This can be especially useful in supporting long-term development and operational goals.
  • Potential for Late-Stage Interest: As the reward for holding tokens grows over time, it may attract new investors down the line, drawn by the prospect of higher yields. This can help to maintain a steady interest in the project throughout its lifecycle.
  • Balancing Perception and Reality: Managing the community's expectations is vital. The notion that early participants are at a disadvantage must be addressed through clear communication about the long-term vision and benefits.

In contrast to a linear schedule, a growing token release schedule adds a strategic twist that favors the longevity of stakeholder engagement. It's a model that can create a solid foundation for future growth but requires careful communication and management to keep stakeholders satisfied. Up next, we will look at the shrinking token release schedule, which applies an opposite approach to distribution.

Shrinking Token Release Schedule

The shrinking token release schedule is characterized by a decrease in the number of tokens released as time goes on. This type of schedule is intended to create a sense of urgency and reward early participants with higher initial payouts.

Characteristics

  • Early Bird Incentives: The shrinking schedule is crafted to reward the earliest adopters the most, offering them a larger share of tokens initially. This creates a compelling case for getting involved early in the project's lifecycle.
  • Fear of Missing Out (FOMO): This approach capitalizes on the FOMO effect, incentivizing potential investors to buy in early to maximize their rewards before the release rate decreases.
  • Decreased Inflation Over Time: As fewer tokens are released into circulation later on, the potential inflationary pressure on the token's value is reduced. This can be an attractive feature for investors concerned about long-term value erosion.

Implications

  • Stimulating Early Adoption: By offering more tokens earlier, projects may see a surge in initial capital inflow, providing the necessary funds to kickstart development and fuel early-stage growth.
  • Risk of Decreased Late-Stage Incentives: As the reward diminishes over time, there's a risk that new investors may be less inclined to participate, potentially impacting the project's ability to attract capital in its later stages.
  • Market Perception and Price Dynamics: The market must understand that the shrinking release rate is a deliberate strategy to encourage early investment and sustain the token's value over time. However, this can lead to challenges in maintaining interest as the release rate slows, requiring additional value propositions.

A shrinking token release schedule offers an interesting dynamic for projects seeking to capitalize on early market excitement. While it can generate significant early support, the challenge lies in maintaining momentum as the reward potential decreases. This necessitates a robust project foundation and continued delivery of milestones to retain stakeholder interest.

Dynamic Token Release Schedule

A dynamic token release schedule represents a flexible and adaptive approach to token distribution. Unlike static models, this schedule can adjust the rate of token release based on specific criteria. Example criteria are: project’s milestones, market conditions, or the behavior of token holders. This responsiveness is designed to offer a balanced strategy that can react to the project's needs in real-time.

Characteristics

  • Adaptability: The most significant advantage of a dynamic schedule is its ability to adapt to changing circumstances. This can include varying the release rate to match market demand, project development stages, or other critical factors.
  • Risk Management: By adjusting the flow of tokens in response to market conditions, a dynamic schedule can help mitigate certain risks. For example: inflation, token price volatility, and the impact of market manipulation.
  • Stakeholder Alignment: This schedule can be structured to align incentives with the project's goals. This means rewarding behaviors that contribute to project's longevity, such as holding tokens for certain periods or participating in governance.

Implications

  • Balancing Supply and Demand: A dynamic token release can fine-tune the supply to match demand, aiming to stabilize the token price. This can be particularly effective in avoiding the boom-and-bust cycles that plague many cryptocurrency projects.
  • Investor Engagement: The flexibility of a dynamic schedule keeps investors engaged, as the potential for reward can change in line with project milestones and success markers, maintaining a sense of involvement and investment in the project’s progression.
  • Complexity and Communication: The intricate nature of a dynamic schedule requires clear and transparent communication with stakeholders to ensure understanding of the system. The complexity also demands robust technical implementation to execute the varying release strategies effectively.

Dynamic token release schedule is a sophisticated tool that, when used judiciously, offers great flexibility in navigating unpredictable crypto markets. It requires a careful balance of anticipation, reaction, and communication but also gives opportunity to foster project’s growth.

Conclusion

A linear token release schedule is the epitome of simplicity and fairness, offering a steady and predictable path. The growing schedule promotes long-term investment and project loyalty, potentially leading to sustained growth. In contrast, the shrinking schedule seeks to capitalize on the enthusiasm of early adopters, fostering a vibrant initial ecosystem. Lastly, the dynamic schedule stands out for its intelligent adaptability, aiming to strike a balance between various stakeholder interests and market forces.

The choice of token release schedule should not be made in isolation; it must consider the project's goals, the nature of its community, the volatility of the market, and the overarching vision of the creators.

FAQ

What are the different token release schedules?

  • Linear, growing, shrinking, and dynamic schedules.

How does a linear token release schedule work?

  • Releases tokens at a constant rate over a specified period.

What is the goal of a shrinking token release schedule?

  • Rewards early adopters with more tokens and decreases over time.